Skip to main content
Log in

Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A quantum circuit is constructed for optimal eavesdropping on quantum key distribution proto- cols using phase-time coding, and its physical implementation based on linear and nonlinear fiber-optic components is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. L. Rivest, A. Shamir, and L. Adleman, Commun. ACM 21, 120 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  2. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computer Systems and Signal Processing, Bangalore, India, December 10–12, 1984 (The IEEE Computer Society of America, New York, 1984), p. 175.

    Google Scholar 

  3. C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992); C. H. Bennett, “Interferometric Quantum Key Distribution System,” US Patent No. 5, 307, 410 (April 26, 1994).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. W. K. Wooters and W. H. Zurek, Nature (London) 299,802 (1982).

    Article  ADS  Google Scholar 

  5. R. Renner, arXiv:quant-ph/0512258.

  6. A. V. Korol’kov, K. G. Katamadze, S. P. Kulik, and S. N. Molotkov, Zh. Éksp. Teor. Fiz. 137(4), 637 (2010) [JETP 110 (4) (2010) (in press)].

    Google Scholar 

  7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, arXiv:quant-ph/0101098; Rev. Mod. Phys. 74, 145 (2002).

    Article  ADS  Google Scholar 

  8. S. N. Molotkov and A. V. Timofeev, Pis’ma Zh. Éksp. Teor. Fiz. 85(10), 632 (2007) [JETP Lett. 85 (10), 524 (2007)].

    Google Scholar 

  9. A. S. Kholevo, Modern Mathematical Physics: Introduction to the Quantum Theory of Information (MTsNMO, Moscow, 2002), issue 5 [in Russian]; Usp. Mat. Nauk 53, 193 (1998).

    Google Scholar 

  10. S. P. Kulik, S. N. Molotkov, and A. P. Makkaveev, Pis’ma Zh. Éksp. Teor. Fiz. 85(6), 354 (2007) [JETP Lett. 85 (6), 297 (2007)].

    Google Scholar 

  11. S. N. Molotkov, Zh. Éksp. Teor. Fiz. 133(1), 5 (2008) [JETP 106 (1), 1 (2008)].

    Google Scholar 

  12. D. A. Kronberg and S. N. Molotkov, Zh. Éksp. Teor. Fiz. 136(4), 650 (2009) [JETP 109 (4), 557 (2009)].

    Google Scholar 

  13. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, arXiv:quant- ph/0802.4155.

  14. W. Mauerer, W. Helwig, and C. Silberhorn, arXiv:quant-ph/0712.0517.

  15. T. Kim, I. S. genannt Wersborg, F. N. C. Wong, and J. H. Shapiro, arXiv:quant-ph/0611235.

  16. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001; Mir, Moscow, 2006).

    Google Scholar 

  17. R. J. Hughes, G. L. Morgan, and C. G. Peterson, arXiv:quant-ph/9904038.

  18. R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan, and M. Schauer, Contemp. Phys. 36, 149 (1995).

    Article  ADS  Google Scholar 

  19. R. J. Hughes, G. G. Luther, G. L. Morgan, C. G. Peterson, and C. M. Simmons, in Proceedings of the 16th Annual International Cryptology Conference, “Advances in Cryptology” (Crypto’96), Santa Barbara, California, United States, 1996 (Springer, Berlin, 1996), p. 329.

    Google Scholar 

  20. P. D. Townsend, J. G. Rarity, and P. R. Tapster, Electron. Lett. 29, 634 (1993).

    Article  Google Scholar 

  21. A. Muller, H. Zbinden, and N. Gisin, Europhys. Lett. 33, 335 (1996).

    Article  ADS  Google Scholar 

  22. C. Marand and P. D. Townsend, Opt. Lett. 20, 1695 (1995).

    Article  ADS  Google Scholar 

  23. P. D. Townsend, Nature (London) 385, 47 (1997).

    Article  ADS  Google Scholar 

  24. P. D. Townsend, Electron. Lett. 30, 809 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  25. J. D. Franson and H. Ilves, Appl. Opt. 33, 2949 (1994).

    Article  ADS  Google Scholar 

  26. A. Muller, H. Zbinden, and N. Gisin, Nature (London) 378, 449 (1995).

    Article  ADS  Google Scholar 

  27. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, Electron. Lett. 33, 586 (1997).

    Article  Google Scholar 

  28. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, Appl. Phys. Lett. 70, 793 (1997).

    Article  ADS  Google Scholar 

  29. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zhbinden, New J. Phys. 4, 41.1 (2002).

    Article  Google Scholar 

  30. D. S. Bethune and W. P. Risk, in International Quantum Electronics Conference (IQEC’98), Digest of Postdeadline Papers, the Moscone Center, San Francisco, California, United States, May 3–8, 1998 (The Optical Society of America, Washington, DC, United States, 1998), Vol. QPD12-2.

    Google Scholar 

  31. D. S. Bethune and W. P. Risk, IEEE J. Quantum. Electron. 36, 340 (2000).

    Article  ADS  Google Scholar 

  32. D. S. Bethune, M. Navarro, and W. P. Risk, arXiv:quant-ph/0104089.

  33. C. Elliott, D. Pearson, and G. Troxel, arXiv:quant-ph//0307049.

  34. C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, arXiv:quant-ph/0503058; C. Elliot, New J. Phys. 4, 46.1 (2002).

    Article  Google Scholar 

  35. Y. Nambu, T. Hatanaka, H. Yamazaki, and K. Nakamura, arXiv:quant-ph/0404015.

  36. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, arXiv:quant-ph//0603041.

  37. Y. Nambu, K. Yoshino, and A. Tomita, arXiv:quant-ph/0403104.

  38. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Article  MATH  ADS  Google Scholar 

  39. S. Rebi, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbal, Phys. Rev. A: At., Mol., Opt. Phys. 70, 032317 (2004).

    ADS  Google Scholar 

  40. S. Glancy, J. M. LoSecco, and C. E. Tanner, arXiv:quant-ph/0009110.

  41. Hiroshi Ajiki, Wang Yao, and Lu J. Sham, Superlattices Microstruct. 34, 213 (2003).

    Article  ADS  Google Scholar 

  42. C. Ottaviani, S. Rebi, D. Vitali, and P. Tombesi, Pre-print No. QMJ5 (2006).

  43. Amitabh Joshi and Min Xiao, Phys. Rev. A: At., Mol., Opt. Phys. 72, 062319 (2005).

    ADS  Google Scholar 

  44. P. M. Leung, T. C. Ralph, W. J. Munro, and Kae Nemoto, arXiv:quant-ph/0810.2828.

  45. Amitabh Joshi and Min Xiao, Preprint No. JWB100 (2005).

  46. T. B. Pittman, B. C. Jacobs, and J. D. Franson, Phys. Rev. A: At., Mol., Opt. Phys. 64, 062311 (2001).

    ADS  Google Scholar 

  47. T. C. Ralph, N. K. Langford, T. B. Bell, and A. G. White, Phys. Rev. A: At., Mol., Opt. Phys. 65, 062324 (2002).

    ADS  Google Scholar 

  48. H. F. Hofmann and Shigeki Takeuchi, Phys. Rev. A: At., Mol., Opt. Phys. 66, 024308 (2002).

    ADS  Google Scholar 

  49. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, Nature (London) 426, 264 (2003).

    Article  ADS  Google Scholar 

  50. S. N. Molotkov, Pis’ma Zh. Éksp. Teor. Fiz. 91(1), 51 (2010) [JETP Lett. 91 (1), 48 (2010)].

    Google Scholar 

  51. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Original Russian Text © D.A. Kronberg, S.N. Molotkov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 1, pp. 33–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronberg, D.A., Molotkov, S.N. Quantum circuit for optimal eavesdropping in quantum key distribution using phase-time coding. J. Exp. Theor. Phys. 111, 27–56 (2010). https://doi.org/10.1134/S1063776110070046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776110070046

Keywords

Navigation