Skip to main content
Log in

Structural Features of the Rapidly Quenched AlCuFe Alloy with Decagonal Quasicrystals

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The multiphase alloys with a high Al content and the presence of quasicrystalline phases are promising for aviation and space industry due to their low specific weight, high specific strength, corrosion resistance, and high tribological properties. An Al82Cu7Fe11 alloy ribbon has been obtained by spinning. It is shown by X-ray diffraction analysis that the alloy contains Al (sp. gr. Fm\(\bar {3}\)m), Al13Fe4 (sp. gr. С2/m), Al2Cu (sp. gr. I4/mcm), Al23CuFe4 (sp. gr. Cmc21), and decagonal quasicrystals (sp. gr. P105mc). The inhomogeneity of the ribbon surface is revealed by scanning electron microscopy. The presence of Al, Al13Fe4, and decagonal quasicrystals in the ribbon is found by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. D. Shechtman, I. Blech, D. Gratias, et al., Phys. Rev. Lett. 53, 1951 (1984). https://doi.org/10.1103/PhysRevLett.53.1951

    Article  ADS  Google Scholar 

  2. A. P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987). https://doi.org/10.1143/JJAP.26.L1505

    Article  Google Scholar 

  3. M. Audier, Y. Bréchet, M. De Boissieu, et al., Philos. Mag. B 63, 1375 (1991). https://doi.org/10.1080/13642819108205568

    Article  ADS  Google Scholar 

  4. Z. Zhang, N. C. Li, and K. Urban, J. Mater. Res. 6, 366 (1991). https://doi.org/10.1557/JMR.1991.0366

    Article  ADS  Google Scholar 

  5. T. Ishimasa, Y. Fukano, and M. Tsuchimori, Philos. Mag. Lett. 58, 157 (1988). https://doi.org/10.1080/09500838808214748

    Article  ADS  Google Scholar 

  6. N. Wang, H. Chen, and K. H. Kuo, Phys. Rev. Lett. 59, 1010 (1987). https://doi.org/10.1103/PhysRevLett.59.1010

    Article  ADS  Google Scholar 

  7. L. Bendersky, Phys. Rev. Lett. 55, 1461 (1985). https://doi.org/10.1103/PhysRevLett.55.1461

    Article  ADS  Google Scholar 

  8. T. Ishimasa, H. U. Nissen, and Y. Fukano, Phys. Rev. Lett. 55, 511 (1985). https://doi.org/10.1103/PhysRevLett.55.511

    Article  ADS  Google Scholar 

  9. K. Chattopadhyay, S. Lele, and S. Ranganathan, Curr. Sci. 54, 895 (1985).

    Google Scholar 

  10. K. K. Fung, C. Y. Yang, Y. Q. Zhou, et al., Phys. Rev. Lett. 56, 2060 (1986). https://doi.org/10.1103/PhysRevLett.56.2060

    Article  ADS  Google Scholar 

  11. X. D. Zou, K. K. Fung, and K. H. Kuo, Phys. Rev. B 35, 4526 (1987). https://doi.org/10.1103/PhysRevB.35.4526

    Article  ADS  Google Scholar 

  12. L. X. He, Y. K. Wu, and K. H. Kuo, J. Mater. Sci. Lett. 7, 1284 (1988). https://doi.org/10.1007/BF00719959

    Article  Google Scholar 

  13. A. Singh and S. Ranganathan, Acta Met. Mater. 43, 3553 (1995). https://doi.org/10.1016/0956-7151(95)00025-Q

    Article  Google Scholar 

  14. Y. F. Cheng, M. J. Hui, and F. H. Li, Philos. Mag. Lett. 64, 129 (1991). https://doi.org/10.1080/09500839108214678

    Article  ADS  Google Scholar 

  15. S. Ebalard and F. Spaepen, J. Mater. Res. 5, 62 (1990). https://doi.org/10.1557/JMR.1990.0062

    Article  ADS  Google Scholar 

  16. J. Menon and C. Suryanarayana, Phys. Status Solidi 107, 693 (1988). https://doi.org/10.1002/pssa.2211070224

    Article  ADS  Google Scholar 

  17. V. V. Shalaeva, E. V. Prekul, A. F. Nazarova, et al., Phys. Solid State 54, 699 (2012).

    Article  ADS  Google Scholar 

  18. S. V. Shalaeva, E. V. Chernyshev, Yu. V. Smirnova, et al., Phys. Solid State 55, 2205 (2013).

    Article  ADS  Google Scholar 

  19. A. Kuzei, Structural and Phase Transformations in Rapidly Quenched Aluminum Alloys (Belaruskaya Navuka, Minsk, 2011).

    Google Scholar 

  20. E. Yu. Neumerzhitskaya, Candidate’s Dissertation in Physics and Mathematics (BGU, Minsk, 2006).

  21. L. L. Chugunov, D. B. Osipov, A. K. Kalmykov, et al., Vestn. Mosk. Univ., Ser. 2: Khim. 56, 98 (2015).

    Google Scholar 

  22. N. Menguy, M. Audier, P. Guyot, et al., Philos. Mag. B 68, 595 (1993). https://doi.org/10.1080/13642819308220145

    Article  ADS  Google Scholar 

  23. Yu. Kh. Vekilov, Soros. Obrazovat. Zh., Ser. Fiz. 4, 87 (1997).

    Google Scholar 

  24. H. R. Leonard, S. Rommel, M. X. Li, et al., Mater. Sci. Eng. A 788, 139487 (2020). https://doi.org/10.1016/j.msea.2020.139487

  25. T. J. Watson, M. A. Gordillo, I. Cernatescu, et al., Scr. Mater. 123, 51 (2016). https://doi.org/10.1016/j.scriptamat.2016.05.037

    Article  Google Scholar 

  26. T. J. Watson, M. A. Gordillo, A. T. Ernst, et al., Corros. Sci. 121, 133 (2017). https://doi.org/10.1016/j.corsci.2017.03.010

    Article  Google Scholar 

  27. T. J. Watson, A. Nardi, A. T. Ernst, et al., Surf. Coatings Technol. 324, 57 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.049

    Article  Google Scholar 

  28. A. A. Teplov, S. I. Belousov, E. A. Golovkova, et al., Crystallogr. Rep. 66, 883 (2021). https://doi.org/10.1134/S1063774521060420

    Article  ADS  Google Scholar 

  29. M. V. Klyueva, Candidate’s Dissertation in Physics and Mathematics (MISiS, Moscow, 2016).

  30. A. Yamamoto, Acta Crystallogr. A 52, 509 (1996). https://doi.org/10.1107/S0108767396000967

    Article  Google Scholar 

  31. B. Koopmans, P. J. Schurer, F. Van der Woude, et al., Phys. Rev. B 35, 3005 (1987). https://doi.org/10.1103/PhysRevB.35.3005

    Article  ADS  Google Scholar 

  32. J. D. Fitz Gerald, R. L. Withers, A. M. Stewart, et al., Philos. Mag. B 58, 15 (1988). https://doi.org/10.1080/13642818808211241

    Article  ADS  Google Scholar 

  33. N. Thangaraj, G. N. Subbanna, S. Ranganathan, et al., J. Microsc. 146, 287 (1987). https://doi.org/10.1111/j.1365-2818.1987.tb01351.x

    Article  Google Scholar 

  34. A. Singh and S. Ranganathan, Philos. Mag. A: Phys. Condens. Matter, Struct. Defects Mech. Prop. 74, 821 (1996). https://doi.org/10.1080/01418619608242163

    Article  ADS  Google Scholar 

  35. P. M. de Wolff, Acta Crystallogr. A 30, 777 (1974). https://doi.org/10.1107/S0567739474010710

    Article  ADS  Google Scholar 

  36. A. Janner and T. Janssen, Phys. Rev. B 15, 643 (1977). https://doi.org/10.1103/PhysRevB.15.643

    Article  ADS  Google Scholar 

  37. A. Janner and T. Janssen, Physica A. 99, 47 (1979). https://doi.org/10.1016/0378-4371(79)90124-9

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Yamamoto and K. N. Ishihara, Acta Crystallogr. A 44, 707 (1988). https://doi.org/10.1107/S010876738800296X

    Article  Google Scholar 

  39. W. Steurer, Z. Krist. 219, 391 (2004). https://doi.org/10.1524/zkri.219.7.391.35643

  40. C. L. Henley, J. Non. Cryst. Solids 75, 91 (1985). https://doi.org/10.1016/0022-3093(85)90208-X

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopy and XRD analysis were carried out using equipment of the Shared Research Center of the Federal Scientific and Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Funding

The electron microscopy and XRD studies and description of the structures were carried out within the State assignment of the Ministry of Science and Higher Education of the Russian Federation for the Federal Scientific and Research Center “Crystallography and Photonics” of the Russian Academy of Sciences. The development of the alloy phase composition, alloy production by spinning, and analysis of the results were carried out within State assignment no. 075-00715-22-00 of the Ministry of Science and Higher Education of the Russian Federation for the Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pavlov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, I.S., Bakhteeva, N.D., Golovin, A.L. et al. Structural Features of the Rapidly Quenched AlCuFe Alloy with Decagonal Quasicrystals. Crystallogr. Rep. 68, 125–130 (2023). https://doi.org/10.1134/S1063774523010169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774523010169

Navigation