Skip to main content
Log in

Laboratory Cone-Beam X-Ray MicroCT System

  • APPARATUS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A prototype of a laboratory cone-beam X-ray microtomography (microCT) system has been designed. The designed microCT setup is based on a microfocus X-ray source operating with accelerating voltages in the range of 30–80 kV. The developed microCT system functioning is automated, and a software for reconstructing 3D images is developed. The results of tomographic studies of several test objects with a resolution below 10 µm are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. J. A. Williams, J. F. Windmill, K. E. Tanner, et al., Bone Rep. 12, 100233 (2020). https://doi.org/10.1016/j.bonr.2019.100233

  2. C. Bikis, P. Thalmann, L. Degrugillier, et al., J. Neurosci. Methods 294, 59 (2018). https://doi.org/10.1016/j.jneumeth.2017.11.005

    Article  Google Scholar 

  3. A. J. Cresswell-Boyes, A. H. Barber, D. Mills, et al., J. Microsc. 272 (3), 207 (2018). https://doi.org/10.1111/jmi.12725

    Article  Google Scholar 

  4. A. S. Machado, D. F. Oliveira, H. S. Gama Filho, et al., X-Ray Spectrom. 46 (5), 427 (2017). https://doi.org/10.1002/xrs.2786

    Article  ADS  Google Scholar 

  5. O. Lame, D. Bellet, M. D. Michiel, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 200, 287 (2003). https://doi.org/10.1016/s0168-583x(02)01690-7

    Article  Google Scholar 

  6. H. D. Carlton, J. W. Elmer, Y. Li, et al., J. Visualized Exp. 110 (2016). https://doi.org/10.3791/53683

  7. F. Wilde, M. Ogurreck, I. Greving, et al., Am. Inst. Phys. Conf. Proc. 1741 (1), 030035 (2016). https://doi.org/10.1063/1.4952858

  8. A. Migga, G. Schulz, G. Rodgers, et al., J. Med. Imaging 9 (3), 031507 (2022). https://doi.org/10.1117/1.JMI.9.3.031507

  9. A. Sasov, B. Pauwels, and P. Bruyndonckx, Dev. X-Ray Tomogr. VII, SPIE 7804, 225 (2010). https://doi.org/10.1117/12.860340

    Article  Google Scholar 

  10. F. Nachtrab, T. Hofmann, C. Speier, et al., J. Instrum. 10 (11), C11009 (2015). https://doi.org/10.1088/1748-0221/10/11/C11009

  11. A. V. Buzmakov, V. E. Asadchikov, D. A. Zolotov, et al., Crystallogr. Rep. 63 (6), 1057 (2018).

    Article  ADS  Google Scholar 

  12. A. I. Mazurov and N. N. Potrakhov, Izv. Vyssh. Uchebn. Zaved., Radioelektron. 22 (3), 53 (2019). https://doi.org/10.32603/1993-8985-2019-22-3-x-x

    Article  Google Scholar 

  13. J. I. Goldstein, H. Yakowitz, and D. E. Newbury, Practical Scanning Electron Microscopy, Ed. by J. I. Goldstein and H. Yakowitz (Plenum Press, New York, 1975).

    Book  Google Scholar 

  14. GOST (State Standard) 22091.9-86, X-Ray Devices. The Methods of Measuring Effective Focus Spot Size, 1986.

    Google Scholar 

  15. European Standard EN 12543-5:1999 “Non-Destructive Testing Characteristics of Focal Spots in Industrial X-Ray Systems for Use in Non-Destructive Testing: Measurement of the Effective Focal Spot Size of Mini and Micro Focus X-Ray Tubes,” 1999.

  16. A. V. Buzmakov, V. E. Asadchikov, D. A. Zolotov, et al., Bull. Russ. Acad. Sci: Phys. 83 (2), 146 (2019).

    Article  Google Scholar 

  17. L. A. Feldkamp, L. C. Davis, and J. W. Kress, J. Opt. Soc. Am. 1, 612 (1984). https://doi.org/10.1364/JOSAA.1.000612

    Article  ADS  Google Scholar 

  18. W. Van Aarle, W. J. Palenstijn, J. Cant, et al., Opt. Express 24 (22), 25129 (2016). https://doi.org/10.1364/OE.24.025129

    Article  ADS  Google Scholar 

  19. S. E. Bogorodskii, V. N. Vasilets, L. I. Krotova, et al., Inorg. Mater.: Appl. Res. 4 (5), 448 (2013). https://doi.org/10.1134/S2075113313050043

    Article  Google Scholar 

  20. Y. S. Krivonosov, V. I. Gulimova, A. V. Buzmakov, et al., Front. Physiol. 12, 2161 (2021). https://doi.org/10.3389/fphys.2021.752893

    Article  Google Scholar 

  21. A. S. Ingacheva and M. V. Chukalina, Math. Problems Eng. 2019, 1 (2019). https://doi.org/10.1155/2019/1405365

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.K. Popov, S.V. Saveliev, and V.I. Gulimova for supplying samples for measurements and to E.N. Potrakhov for the consultations during the study.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in part of “conducting microtomographic studies” and according to Agreement No. 075-15-2021-136 dated 12.10.2021 in part of “designing a microCT system with a microfocus source.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Krivonosov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivonosov, Y.S., Buzmakov, A.V., Grigorev, M.Y. et al. Laboratory Cone-Beam X-Ray MicroCT System. Crystallogr. Rep. 67, 1292–1297 (2022). https://doi.org/10.1134/S1063774522070239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522070239

Navigation