Skip to main content
Log in

Neutron Reflectometry in Russia: Current State and Prospects

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The review is devoted to the current state of affairs and prospects for development in the field of neutron reflectometry on the existing and future neutron sources in the Russian Federation. Due to the commissioning of new instruments at the IR-8 and PIK reactors, the number of neutron reflectometers in the Russian Federation should double. As a result, there must arise a set of instruments aimed at solving various problems in the fields of physics, chemistry, and biology of layered systems in the interests of the scientific community and to train experts for further development and improvement of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Zabel, K. Theis-Bröhl, and B. P. Toperverg, The Handbook of Magnetism and Advanced Magnetic Materials, Vol. 3: Novel Techniques, Ed. by H. Kronmüller and S. P. S. Parkin (Wiley, New York, 2007), p. 1237.

  2. M. R. Fitzsimmons and I. K. Schuller, J. Magn. Magn. Mater. 350, 199 (2014). https://doi.org/10.1016/j.jmmm.2013.09.028

    Article  ADS  Google Scholar 

  3. H.-J. Lauter, V. Lauter, and B. P. Toperverg, Polym. Sci. A: Compr. Ref. 2, 411 (2012). https://doi.org/10.1016/B978-0-444-53349-4.00033-9

    Article  Google Scholar 

  4. R. Cubitt and G. Fragneto, Appl. Phys. A 74, S329 (2002). https://doi.org/10.1007/s003390201611

    Article  ADS  Google Scholar 

  5. M. James, A. Nelson, S. A. Holt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 632, 112 (2011). https://doi.org/10.1016/j.nima.2010.12.075

    Article  Google Scholar 

  6. R. A. Campbella, H. P. Wacklin, I. Sutton, et al., Eur. Phys. J. Plus 126, 107 (2011). https://doi.org/10.1140/epjp/i2011-11107-8doi

    Article  Google Scholar 

  7. Th. Saerbeck, R. Cubitt, A. Wildes, et al., J. Appl. Crystallogr. 51, 249 (2018). https://doi.org/10.1107/S160057671800239X

    Article  Google Scholar 

  8. S. Mattauch, A. Koutsioubas, U. Rücker, et al., J. Appl. Crystallogr. 51, 646 (2018). https://doi.org/10.1107/S1600576718006994

    Article  Google Scholar 

  9. Yu. V. Nikitenko and V. G. Syromyatnikov, Polarized-Neutron Reflectometry (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  10. V. Syromyatnikov, B. Toperverg, A. Schebetov, et al., Preprint No. 2006, PNPI (1994), p. 37.

  11. M. Belicka, Yu. Gerelli, N. Kucerka, et al., Soft Matter 11, 6275 (2015). https://doi.org/10.1039/C5SM00274E

    Article  ADS  Google Scholar 

  12. R. Eells, M. Barrps, K. M. Scott, et al., Biointerphases 12 (2), 02D408 (2017). https://doi.org/10.1116/1.4983155

  13. M. A. Marchenkova, Y. A. Dyakova, E. Y. Tereschenko, et al., Langmuir 31 (45), 12426 (2015). https://doi.org/10.1021/acs.langmuir.5b03155

    Article  Google Scholar 

  14. M. V. Koval’chuk, A. S. Boikova, Yu. A. D’yakova, et al., Crystallogr. Rep. 62 (4), 632 (2017). https://doi.org/10.7868/S0023476117040129

    Article  ADS  Google Scholar 

  15. M. V. Kovalchuk, A. S. Boikova, Y. A. Dyakova, et al., Thin Solid Films 677, 13 (2019). https://doi.org/10.1016/j.tsf.2019.02.051

    Article  ADS  Google Scholar 

  16. H. Zabel, Mater. Today. 9 (1–2), 42 (2006). https://doi.org/10.1016/S1369-7021(05)71337-7

    Article  Google Scholar 

  17. J. F. Ankner and G. P. Felcher, J. Magn. Magn. Mater. 200, 741 (1999).

    Article  ADS  Google Scholar 

  18. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 820, 146 (2016). https://doi.org/10.1016/j.nima.2016.03.017

    Article  Google Scholar 

  19. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 866, 213 (2017). https://doi.org/10.1016/j.nima.2017.06.011

    Article  Google Scholar 

  20. S. Mattauch, A. Koutsioubas, and S. Pütter, J. Large-Scale Res. Facilities A8 (2015). https://doi.org/10.17815/jlsrf-1-29

  21. L. Bottyán, D. G. Merkel, B. Nagy, et al., Rev. Sci. Instrum. 84, 015112 (2013).

    Article  ADS  Google Scholar 

  22. E. A. Koptelov, www.inr.ru/rus/mmf/sodruj.html

  23. V. D. Ananiev, A. V. Vinogradov, A. V. Dolgikh, et al., Proc. European Research Reactor Conf., St. Petersburg, April 21–25, 2013, p. 4.

  24. P. Mueller-Buschbaum, Polym. J. 45, 34 (2013).

    Article  Google Scholar 

  25. E. Kentzinger, U. Rücker, B. Toperverg, et al., Phys. Rev. B 77, 104435 (2008). https://doi.org/10.1103/PhysRevB.77.104435

    Article  ADS  Google Scholar 

  26. V. G. Syromyatnikov, A. Menelle, B. P. Toperverg, et al., Physica B 267–268, 190 (1999). https://doi.org/10.1016/S0921-4526(99)00016-2

    Article  ADS  Google Scholar 

  27. V. Syromyatnikov, B. Toperverg, V. Deriglazov, et al., Physica B 234–236, 475 (1997). https://doi.org/10.1016/S0921-4526(96)01015-0

    Article  ADS  Google Scholar 

  28. R. Steitz and R. Dahint, Adv. Eng. Mats. 13 (8), 773 (2011). https://doi.org/10.1002/adem.201100008

    Article  Google Scholar 

  29. http://www.reflectometry.net/reflect.htm

  30. D. J. Hughes and M. T. Burgy, Phys. Rev. 81, 498 (1951). https://doi.org/10.1103/PhysRev.81.498

    Article  ADS  Google Scholar 

  31. G. P. Felcher, Phys. Rev. B 24, 1595 (1981). https://doi.org/10.1103/PhysRevB.24.1595

    Article  ADS  Google Scholar 

  32. G. P. Felcher, R. O. Hilleke, R. K. Crawford, et al., Rev. Sci. Instrum. 58, 4 (1981).

    Google Scholar 

  33. A. G. Gukasov, V. V. Deriglazov, V. Ya. Kezerashvili, et al., Zh. Eksp. Teor. Fiz. 77, 1720 (1979).

    Google Scholar 

  34. A. Shchebetov, V. A. Kudryashov, V. P. Kharchenkov, et al., Zh. Eksp. Teor. Fiz. 74 (3), 862 (1978).

    Google Scholar 

  35. V. M. Pusenkov, N. K. Pleshanov, V. G. Syromyatnikov, et al., J. Magn. Magn. Mater. 175, 237 (1997). https://doi.org/10.1016/S0304-8853(97)00247-3

    Article  ADS  Google Scholar 

  36. N. K. Pleshanov, V. L. Aksenov, A. P. Bulkin, et al., J. Phys.: Conf. Ser. 340, 012085 (2012). https://doi.org/10.1088/1742-6596/340/1/012085

    Article  Google Scholar 

  37. V. G. Syromyatnikov, N. K. Pleshanov, V. M. Pusenkov, et al., Preprint No. 2619, PNPI, Gatchina (2005), p. 47.

    Google Scholar 

  38. N. K. Pleshanov, L. A. Aksel’rod, V. N. Zabenkin, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 11, 3 (2008).

    Google Scholar 

  39. V. L. Aksenov, K. N. Jernenkov, S. V. Kozhevnikov, et al., JINR Commun. D13-2004-4704 (2004).

  40. D. A. Korneev, V. V. Pasyuk, A. V. Petrenko, et al., Springer Proceedings in Physics, Vol. 61: Surface X-ray and Neutron Scattering, Ed. by H. Zabel and I. K. Robinson (Springer, Berlin, 1992), p. 213. https://doi.org/10.1007/978-3-642-77144-6_40

  41. D. A. Korneev, Poverkhn.: Fiz. Khim., Mekh. 2, 13 (1989).

    Google Scholar 

  42. D. A. Korneev, S. V. Gaponov, E. B. Dokukin, et al., Pis’ma Zh. Eksp. Teor. Fiz. 49 (5), 277 (1989).

    ADS  Google Scholar 

  43. D. A. Korneev, E. B. Dokukin, and A. V. Petrenko, J. Magn. Magn. Mater. 90–91, 637 (1990). https://doi.org/10.1016/S0304-8853(10)80231-8

    Article  Google Scholar 

  44. D. A. Korneev, L. P. Chernenko, A. V. Petrenko, et al., Springer Proceedings in Physics, Vol. 61: Surface X-ray and Neutron Scattering, Ed. by H. Zabel and I. K. Robinson (Springer, Berlin, 1992), p. 209.

  45. V. D. Zhaketov, A. V. Petrenko, S. N. Vdovichev, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 6, 20 (2019). https://doi.org/10.1134/S0207352819060155

    Article  Google Scholar 

  46. M. V. Avdeev, V. I. Bodnarchuk, V. I. Petrenko, et al., Crystallogr. Rep. 62 (6), 1002 (2017). https://doi.org/10.7868/S0023476117060029

    Article  ADS  Google Scholar 

  47. M. V. Avdeev, A. A. Rulev, V. I. Bodnarchuk, et al., Appl. Surf. Sci. 424, 378 (2017). https://doi.org/10.1016/j.apsusc.2017.01.290

    Article  ADS  Google Scholar 

  48. M. V. Avdeev, A. A. Rulev, E. E. Ushakova, et al., Appl. Surf. Sci. 486, 287 (2019). https://doi.org/10.1016/j.apsusc.2019.04.241

    Article  ADS  Google Scholar 

  49. D. A. Korneev, V. L. Aksenov, and L. P. Chernenko, SPIE Proc. Ser. 1738, 335 (1992).

  50. V. S. Litvin, V. A. Trunov, A. P. Bulkin, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 11, 3 (2010).

    Google Scholar 

  51. A. B. Rubtsov, N. F. Miron, V. A. Somenkov, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 2, 5 (2011).

    Google Scholar 

  52. V. G. Syromyatnikov, RF Patent No. 2590922 (June 16, 2015).

  53. A. G. Gilev, V. A. Ul’yanov, S. I. Kalinin, et al., Nauchn. Priborostr. 29 (2), 54 (2019). https://doi.org/10.18358/np-29-2-i5463

    Article  Google Scholar 

  54. V. G. Syromyatnikov, V. A. Ulyanov, V. Lauter, et al., J. Phys.: Conf. Ser. 528, 012021 (2014). https://doi.org/10.1088/1742-6596/528/1/012021

    Article  Google Scholar 

  55. D. Solina, D. Lott, U. Tietze, et al., Physica B 385–386, 1167 (2006). https://doi.org/10.1016/j.physb.2006.05.401

    Article  ADS  Google Scholar 

  56. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 853, 61 (2017). https://doi.org/10.1016/j.nima.2017.02.018

    Article  Google Scholar 

  57. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 872, 139 (2017). https://doi.org/10.1016/j.nima.2017.08.019

    Article  Google Scholar 

  58. V. G. Syromyatnikov, Proc. Int. Conf. Neutron Optics (NOP2017), JPS Conf. Proc. 2018, p. 011005. https://doi.org/10.7566/JPSCP.22.011005

  59. V. G. Syromyatnikov and V. M. Pusenkov, J. Phys.: Conf. Ser. 862, 012028 (2017). https://doi.org/10.1088/1742-6596/862/1/012028

    Article  Google Scholar 

  60. S. Muhlbauer, B. Binz, F. Jonietz, et al., Science 323, 915 (2009). https://doi.org/10.1126/science.1166767

    Article  ADS  Google Scholar 

  61. X.-Z. Yu, Y. Onoze, N. Kanazawa, et al., Nature 65, 901 (2010). https://doi.org/10.1038/nature09124

    Article  ADS  Google Scholar 

  62. S. Seki, X. Z. Yu, S. Ishiwata, et al., Science 336, 198 (2012). https://doi.org/10.1126/science.1214143

    Article  ADS  Google Scholar 

  63. N. K. Pleshanov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 12, 8 (2019). https://doi.org/10.1134/S1027451019050112

    Article  Google Scholar 

  64. W. H. Kraan, S. V. Grigoriev, M. Th. Rekveldt, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 510 (3), 334 (2003). https://doi.org/10.1016/S0168-9002(03)01812-6

    Article  Google Scholar 

  65. M. Th. Rekveldt, J. Plomp, W. G. Bouwman, et al., Rev. Sci. Instrum. 76, 033901 (2005).

    Article  ADS  Google Scholar 

  66. V. Bodnarchuk, V. Sadilov, S. Manoshin, et al., J. Phys.: Conf. Ser. 862, 012003 (2017). https://doi.org/10.1088/1742-6596/862/1/012003

    Article  Google Scholar 

  67. F. Klose, C. Rehm, D. Nagengast, et al., Phys. Rev. Lett. 78, 1150 (1997). https://doi.org/10.1103/PhysRevLett.78.1150

    Article  ADS  Google Scholar 

  68. B. Hjörvarsson, J. A. Dura, P. Isberg, et al., Phys. Rev. Lett. 79, 901 (1997). https://doi.org/10.1103/PhysRevLett.79.901

    Article  ADS  Google Scholar 

  69. A. E. Munter and B. J. Heuser, Phys. Rev. B 58, 678 (1998). https://doi.org/10.1103/PhysRevB.55.14035

    Article  ADS  Google Scholar 

  70. C. Rehm, H. Fritzsche, H. Maletta, et al., Phys. Rev. B 59, 3142 (1999). https://doi.org/10.1103/PhysRevB.59.3142

    Article  ADS  Google Scholar 

  71. Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials, Ed. by H. Fritzsche (Springer, Switzerland. 2005).

    Google Scholar 

  72. D. G. Wiesler and C. F. Majkrzak, Physica B 198, 181 (1994).

    Article  ADS  Google Scholar 

  73. S. Clarke and M. H. Wood, Metals 7, 304 (2017). https://doi.org/10.3390/met7080304

    Article  Google Scholar 

  74. Surface X-ray and Neutron Scattering, Ed. by H. Zabel and K. Robinson (Springer, 2002). https://doi.org/10.1007/978-3-642-77144-6

    Book  Google Scholar 

  75. A. Zeilinger and T. J. Beatty, Phys. Rev. B 27, 7239 (1983). https://doi.org/10.1103/PhysRevB.27.7239

    Article  ADS  Google Scholar 

  76. H. Dosch, K. Al Usta, A. Lied, et al., Rev. Sci. Instrum. 63, 5533 (1992). https://doi.org/10.1063/1.1143841

    Article  ADS  Google Scholar 

  77. Yu. A. Salamatov and E. A. Kravtsov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 11, 62 (2016). https://doi.org/10.7868/S0207352816110160

    Article  Google Scholar 

  78. E. S. Nikova, Yu. A. Salamatov, E. A. Kravtsov, et al., Fiz. Met. Metalloved. 120, 913 (2019). https://doi.org/10.1134/S0015323019090109

    Article  Google Scholar 

  79. N. K. Pleshanov, Physica B 269, 79 (1999). https://doi.org/10.1016/S0921-4526(99)00048-4

    Article  ADS  Google Scholar 

  80. N. K. Pleshanov, Neutron Spin Optics: Concepts, Verification, and Prospects, in Advances in Neutron Optics, Ed. by M. L. Calvo and R. F. Alvarez-Estrada (CRC Press, Taylor and Francis Group, Boca Raton, 2019), p. 205.

Download references

Funding

This study was performed at the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, and Ural State University (Yekaterinburg) within the State assignment of the Ministry of Science and Higher Education of the Russian Federation (subject “Spin” no. AAAА-A18-118020290104-2) and supported in part by the Russian Foundation for Basic Research, project nos. 20-42-660024 and 19-02-00674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bodnarchuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodnarchuk, V.I., Boulkin, A.P., Kravtsov, E.A. et al. Neutron Reflectometry in Russia: Current State and Prospects. Crystallogr. Rep. 67, 50–63 (2022). https://doi.org/10.1134/S1063774522010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774522010047

Navigation