Skip to main content
Log in

Structural Features Associated with Twinning in the Growth of Gallium Arsenide Single Crystals by the Czochralski Method

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structural features induced by twinning in tin- and tellurium-doped gallium arsenide crystals during their growth by the Czochralski method with liquid melt sealing by boric anhydride have been considered. It is shown that growth twins and edge facets arise at the crystal periphery in the region of supercooled melt. The dopant concentration near a twin is always higher than in the region free of twins. A change is observed in the dislocation-growth direction in crystal during twinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Deceased.

REFERENCES

  1. T. P. Chen, Y. D. Guo, T. S. Huang, and L. J. Chen, J. Cryst. Growth 103, 343 (1990).

    Article  Google Scholar 

  2. H. J. Koh, M. H. Choi, I. S. Park, and T. Fukuda, Cryst. Res. Technol. 30, 397 (1995).

    Article  Google Scholar 

  3. P. Rudolph, F. Matsumoto, and T. Fukuda, J. Cryst. Growth 150, 43 (1996).

    Article  ADS  Google Scholar 

  4. A. Steinemann and U. Zimmerli, Solid State Electron. 6, 597 (1963).

    Article  ADS  Google Scholar 

  5. K. Hashio and S. Sawada, J. Cryst. Growth 173, 33 (1997).

    Article  ADS  Google Scholar 

  6. S. S. Gorelik and M. Ya. Dashevskii, Materials Science of Semiconductors and Insulators (Metallurgiya, Moscow, 1988) [in Russian].

    Google Scholar 

  7. M. G. Mil’vidskii and V. B. Osvenskii, Structural Defects in Semiconductor Single Crystals (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  8. R. G. Rodes, Defects and Active Centers in Semiconductors (Metallurg, Moscow, 1968) [in Russian].

    Google Scholar 

  9. G. W. Iseler, J. Cryst. Growth 54, 16 (1981).

    Article  ADS  Google Scholar 

  10. V. Kalaev, A. Sattler, and L. Kadinski, J. Cryst. Growth 413, 12 (2015).

    Article  ADS  Google Scholar 

  11. D. T. Herle, J. Cryst. Growth 147, 239 (1995).

    Article  ADS  Google Scholar 

  12. V. A. Selivaniov, A. M. Misik, and V. A. Presnov, Gallium Arsenide (Izd-vo TGU, Tomsk, 1968) [in Russian].

    Google Scholar 

  13. D. J. Stirland and R. Orgen, Phys. Status Solidi A 17, K1 (1973).

    Article  ADS  Google Scholar 

  14. M. S. Abrachams and C. J. Buiocchi, J. Appl. Phys. 36, 2855 (1965).

    Article  ADS  Google Scholar 

  15. J. P. Tower, R. Tobin, P. J. Pearah, et al., J. Cryst. Growth 114, 665 (1991).

    Article  ADS  Google Scholar 

  16. M. Shibata, Y. Sasaka, T. Inada, and S. Kuma, J. Cryst. Growth 102, 557 (1990).

    Article  ADS  Google Scholar 

  17. A. Ya. Shashkov, Production of Semiconductor Materials (Metallurg, Moscow, 1989) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.F. PavlovFootnote 1 and V.N. Chernov for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Yugova.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yugov, A.A., Pugachev, B.V., Yugova, T.G. et al. Structural Features Associated with Twinning in the Growth of Gallium Arsenide Single Crystals by the Czochralski Method. Crystallogr. Rep. 65, 832–835 (2020). https://doi.org/10.1134/S1063774520060413

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060413

Navigation