Skip to main content
Log in

The Crystal-Chemical Features of Phases and the Nature of the Coordination Bond in the System [CuxNi(1 – x){N(CH2PO3)3}]Na4 · nH2O (x = 0–1)

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structural features of the phases formed during crystallization of mixed copper and nickel complexes with nitrilotris(methylenephosphonic acid) [CuxNi(1 – x){N(CH2PO3)3}]Na4 · nH2O (x = 0–1) and the character of the M ← O(P) coordination bond have been investigated. The copper-dominant phase [(Cu,Ni){N(CH2PO3)3}]Na4 · 13H2O (sp. gr. P\(\bar {1}\), Z = 2, a = 10.0096(2)–10.0118(2) Å, b = 11.0311(3)–11.0330(2) Å, c = 12.2893(2)–12.3038(3) Å, α = 84.7180(10)°–84.785(2)°, β = 79.504(2)°–79.544(2)°, γ = 66.971(2)°–67.058(2)°) is characterized by the trigonal bipyramidal coordination of the metal atom (oxygen atoms of three different PO3 groups of the ligand molecule lie in the pyramid-base plane, and a nitrogen atom and the oxygen atom of the neighboring ligand molecule occupy opposite vertices). The nickel-containing phase [Ni(H2O){N(CH2PO3)3}]Na4 · 11H2O (sp. gr. C2/c, Z = 4, a = 11.9924(2)–12.05510(10) Å, b = 18.6049(3)–18.7152(2) Å, c = 21.0724(4)–21.1266(2) Å, β = 104.096(2)°–104.4960(10)°) is characterized by octahedral coordination of the Ni atom (oxygen atoms of different PO3 groups of the ligand molecule are located at three meridian octahedron vertices, and a nitrogen atom, a water molecule, and the oxygen atom of the neighboring ligand molecule occupy the rest three vertices). The dependence of the interatomic distances and bond angles in the coordination sphere of the metal atom on the Cu : Ni ratio has been studied. It is shown that the transition from the trigonal bipyramidal coordination to the octahedral coordination is accompanied by a sharp increase in the ionicity of the M ← O(P) coordination bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Cabeza, X. Ouyang, C. V. K. Sharma, et al., Inorg. Chem. 41, 2325 (2002). https://doi.org/10.1021/ic0110373

    Article  Google Scholar 

  2. K. D. Demadis, S. D. Katarachia, and M. Koutmos, Inorg. Chem. Commun. 8, 254 (2005). https://doi.org/10.1016/j.inoche.2004.12.019

    Article  Google Scholar 

  3. L. Cunha-Silva, L. Mafra, D. Ananias, et al., Chem. Mater. 19, 3527 (2007). https://doi.org/10.1021/cm070596q

    Article  Google Scholar 

  4. M. Bazaga-García, G. K. Angeli, K. E. Papathanasiou, et al., Inorg. Chem. 55, 7414 (2016). https://doi.org/10.1021/acs.inorgchem.6b00570

    Article  Google Scholar 

  5. N. V. Somov and F. F. Chausov, Crystallogr. Rep. 59 (1), 66 (2014).

    Article  ADS  Google Scholar 

  6. N. V. Somov and F. F. Chausov, Crystallogr. Rep. 60 (2), 210 (2015).

    Article  ADS  Google Scholar 

  7. N. V. Somov, F. F. Chausov, R. M. Zakirova, and I. V. Fedotova, Crystallogr. Rep. 61 (2), 216 (2016).

    Article  ADS  Google Scholar 

  8. N. V. Somov, F. F. Chausov, R. M. Zakirova, and I. V. Fedotova, Russ. J. Coord. Chem. 41 (12), 798 (2015).

    Article  Google Scholar 

  9. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Crystallogr. Rep. 62 (6), 857 (2017).

    Article  ADS  Google Scholar 

  10. N. V. Somov, F. F. Chausov, N. V. Lomova, et al., Russ. J. Coord. Chem. 43 (9), 583 (2017).

    Article  Google Scholar 

  11. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Russ. J. Coord. Chem. 43 (12), 864 (2017).

    Article  Google Scholar 

  12. N. V. Somov, F. F. Chausov, and R. M. Zakirova, Crystallogr. Rep. 61 (3), 395 (2016).

    Article  ADS  Google Scholar 

  13. N. V. Somov, F. F. Chausov, and R. M. Zakirova, Crystallogr. Rep. 61 (4), 606 (2016).

    Article  ADS  Google Scholar 

  14. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Russ. J. Coord. Chem. 43 (6), 373 (2017).

    Article  Google Scholar 

  15. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Crystallogr. Rep. 63 (6), 901 (2018).

    Article  ADS  Google Scholar 

  16. N. V. Somov, F. F. Chausov, R. M. Zakirova, et al., Crystallogr. Rep. 63 (3), 364 (2018).

    Article  ADS  Google Scholar 

  17. Yu. I. Kuznetsov, Usp. Khim. 73 (1), 79 (2004).

    Article  Google Scholar 

  18. Yu. I. Kuznetsov, Fizikokhim. Poverkhn. Zashch. Mater. 38 (2), 122 (2002).

    Google Scholar 

  19. N. V. Lomova, F. F. Chausov, and I. N. Shabanova, Bull. Russ. Acad. Sci.: Phys. 82 (7), 884 (2018).

    Article  Google Scholar 

  20. N. M. Dyatlova, V. Ya. Temkina, and K. I. Popov, Complexons and Complexonates of Metals (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  21. J. M. Stewart and E. C. Lingafelter, Acta Crystallogr. 12 (11), 842 (1959). https://doi.org/10.1107/s0365110x59002444

    Article  Google Scholar 

  22. J. C. McDonald, T.-J. M. Luo, and G. T. R. Palmore, Cryst. Growth Des. 4 (6), 1203 (2004). https://doi.org/10.1021/cg049974j

    Article  Google Scholar 

  23. L. Mao, S. J. Rettig, and R. C. Et al. Thompson, Can. J. Chem. 74, 433 (2011). https://doi.org/10.1139/v96-047

    Article  Google Scholar 

  24. I. B. Bersuker, Electronic Structure and Properties of Coordination Compounds: Introduction into Theory (Khi-miya, Leningrad, 1976) [in Russian].

    Google Scholar 

  25. C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).

    MATH  Google Scholar 

  26. F. F. Chausov, N. V. Lomova, N. V. Somov, et al., J. Cryst. Growth 524, 125187 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125187

    Article  Google Scholar 

  27. Rigaku Oxford Diffraction, CrysAlis PRO (Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England, 2016).

    Google Scholar 

  28. G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  ADS  Google Scholar 

  29. L. J. Farrugia, J. Appl. Crystallogr. 32, 837 (1999). https://doi.org/10.1107/S0021889899006020

    Article  Google Scholar 

  30. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  31. E. N. Sviridova and N. V. Ivanova, Vestn. KemGU 3 (3), 108 (2013).

    Google Scholar 

  32. V. A. Trapeznikov, I. N. Shabanova, A. V. Kholzakov, and A. G. Ponomaryov, J. Electron Spectrosc. Relat. Phenom. 137, 383 (2004). https://doi.org/10.1016/j.elspec.2004.02.115

    Article  Google Scholar 

  33. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010). https://doi.org/10.1107/S0021889810030499

    Article  Google Scholar 

  34. J. J. Daly and P. J. Wheatley, J. Chem. Soc. A 212 (1967). https://doi.org/10.1039/J19670000212

  35. A. W. Addison, T. N. Rao, J. Reedijk, et al., J. Chem. Soc., Dalton Trans., No. 7, 1349 (1984). https://doi.org/10.1039/dt9840001349

  36. N. V. Somov and P. V. Andreev, Crystallogr. Rep. 63 (1), 32 (2018). https://doi.org/10.1134/S1063774518010170

    Article  ADS  Google Scholar 

  37. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  38. C. A. Tolman, W. M. Riggs, W. J. Linn, et al., Inorg. Chem. 12 (12), 2770 (1973). https://doi.org/10.1021/ic50130a006

    Article  Google Scholar 

  39. T. Yoshida and K. Yamasaki, Bull. Chem. Soc. Jpn. 54 (3), 935 (1981). https://doi.org/10.1246/bcsj.54.935

    Article  Google Scholar 

  40. P. Brand and H. Freiser, Analyt. Chem. 46 (8), 1147 (1974). https://doi.org/10.1021/ac60344a010

    Article  Google Scholar 

  41. T. Yoshida, K. Yamasak, and S. Sawada, Bull. Chem. Soc. Jpn. 51 (5), 1561 (1978). https://doi.org/10.1246/bcsj.51.1561

    Article  Google Scholar 

  42. B. Cordero, V. Gómez, A. E. Platero-Prats, et al., Dalton Trans. 2832 (2008). https://doi.org/10.1039/b801115j

Download references

Funding

This study was performed within the basic part of a state contract (project no. 3.6502.2017/BCh) for higher educational institutions and scientific organizations in the part concerning the XRD analysis. The spectroscopic analysis was performed within a State assignment of the Ministry of Science and Higher Education of the Russian Federation (state registration no. АААА-А19-119093090055-2) using equipment of the Shared Research Center “Center of Physical and Physicochemical Methods for Analysis and Study of the Properties and Characteristics of Surfaces, Nanostructures, Materials, and Products” of the Udmurt Federal Research Center (Ural Branch, Russian Academy of Sciences), supported by the Ministry of Science and Higher Education of the Russian Federation within the Federal Target Program “Research and Development in the Priority Fields of the Scientific and Technological Complex of Russia for 2014–2020” (project no. RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Somov or F. F. Chausov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somov, N.V., Chausov, F.F., Lomova, N.V. et al. The Crystal-Chemical Features of Phases and the Nature of the Coordination Bond in the System [CuxNi(1 – x){N(CH2PO3)3}]Na4 · nH2O (x = 0–1). Crystallogr. Rep. 65, 726–739 (2020). https://doi.org/10.1134/S1063774520050211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520050211

Navigation