Skip to main content
Log in

Stereochemistry of silicon in oxygen-containing compounds

  • Crystal Chemistry
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Specific stereochemical features of silicon in oxygen-containing compounds, including hybrid silicates with all oxygen atoms of SiOn groups (n = 4, 5, or 6) entering into the composition of organic anions or molecules, are described by characteristics of Voronoi—Dirichlet polyhedra. It is found that in rutile-like stishovite and post-stishovite phases with the structures similar to those of СаСl2, α-PbO2, or pyrite FeS2, the volume of Voronoi—Dirichlet polyhedra of silicon and oxygen atoms decreases linearly with pressure increasing to 268 GPa. Based on these results, the possibility of formation of new post-stishovite phases is shown, namely, the fluorite-like structure (transition predicted at ~400 GPa) and a body-centered cubic lattice with statistical arrangement of silicon and oxygen atoms (~900 GPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. G. Wyckoff, Z. Kristallogr. 62 (1), 189 (1925).

    Google Scholar 

  2. W. H. Bragg and R. E. Gibbs, Proc. Roy. Soc. A (London) 109 (751), 405 (1925).

    Article  ADS  Google Scholar 

  3. A. M. Smolegovskii, Development of the Concept of the Structure of Silicates (Nauka, Moscow, 1979), p. 231 [in Russian].

    Google Scholar 

  4. S. M. Stishov and S. V. Popova, Geokhimiya 10 (8), 873 (1961).

    Google Scholar 

  5. A. R. Oganov and S. Ono, Nature 430 (6998), 445 (2004).

    Article  ADS  Google Scholar 

  6. S. Ono, T. Kikegawa, and Y. Ohishi, Am. Mineral. 91 (2-3), 475 (2006).

    Article  ADS  Google Scholar 

  7. T. Yamanaka, W. L. Mao, H. -K. Mao, et al., J. Phys.: Conf. Ser. 215, 012100 (2010).

    Google Scholar 

  8. V. N. Serezhkin, Yu. N. Mikhailov, and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42 (12), 1871 (1997).

    Google Scholar 

  9. D. V. Korol’kov and G. A. Skorobogatov, Theoretical Chemistry (S.-Peterb. State Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  10. Inorganic Crystal Structure Database. Gmelin-Inst. Anorg. Chem. und FIZ, Karlsruhe (2012).

  11. Cambridge Structural Database System. Cambridge Crystallogr. Data Center (2015).

  12. L. Levien, C. T. Prewitt, and D. J. Weidner, Am. Mineral. 65 (9-10), 920 (1980).

    Google Scholar 

  13. T. Yamanaka, T. Fukuda, and J. Tsuchiya, Phys. Chem. Miner. 29 (9), 633 (2002).

    Article  ADS  Google Scholar 

  14. Y. Kuwayama, K. Hirose, N. Sata, and Y. Ohishi, Science 309, 923 (2005).

    Article  ADS  Google Scholar 

  15. P. Dera, J. D. Lazarz, V. B. Prakapenka, et al., Phys. Chem. Miner. 38, 517 (2011).

    Article  ADS  Google Scholar 

  16. V. N. Serezhkin and V. S. Urusov, J. Struct. Chem. 50 (5), 861 (2009).

    Article  Google Scholar 

  17. E. Hey-Hawkins, U. Dettlaff-Weglikowska, and D. Thiery, Polyhedron 11 (14), 1789 (1992).

    Article  Google Scholar 

  18. V. N. Serezhkin, T. N. Polynova, and M. A. Porai-Koshits, Koord. Khim. 21 (4), 253 (1995).

    Google Scholar 

  19. V. N. Serezhkin, Ya. A. Medvedkov, L. B. Serezhkina, and D. V. Pushkin, Russ. J. Phys. Chem. A 89 (6), 1018 (2015).

    Article  Google Scholar 

  20. W. Donharl, I. Elhofer, P. Wiede, and U. Schubert, J. Chem. Soc., Dalton Trans., No. 15, 2445 (1998).

    Article  Google Scholar 

  21. R. Tacke, C. Burschka, I. Richter, et al., J. Am. Chem. Soc. 122 (35), 8480 (2000).

    Article  Google Scholar 

  22. O. Seiler, C. Burschka, T. Fenske, et al., Inorg. Chem. 46 (13), 5419 (2007).

    Article  Google Scholar 

  23. R. Tacke, R. Bertermann, C. Burschka, and S. Dragota, Z. Anorg. Allg. Chem. 630 (12), 2006 (2004).

    Article  Google Scholar 

  24. D. Hogerle, U. Link, and U. Thewalt, Z. Naturforsch., B: Chem. Sci. 48 (5), 691 (1993).

    Article  Google Scholar 

  25. O. Seiler, C. Burschka, M. Penka, and R. Tacke, Z. Anorg. Allg. Chem. 628 (11), 2427 (2002).

    Article  Google Scholar 

  26. F. E. Hahn, M. Keck, and K. N. Raymond, Inorg. Chem. 34 (6), 1402 (1995).

    Article  Google Scholar 

  27. L. Wicke, E. Alig, H.-W. Lerner, and M. Bolte, Acta Crystallogr. E 58 (8), o927 (2002).

    Article  Google Scholar 

  28. J. O. C. Jimenez-Halla, J. Robles, M. Villanueva, et al., J. Mex. Chem. Soc. 50 (4), 184 (2006).

    Google Scholar 

  29. F. Hajek, E. Graf, M. W. Hosseini, et al., Tetrahedron Lett. 37 (9), 1401 (1996).

    Article  Google Scholar 

  30. Y. Yonesaki, T. Takei, N. Kumada, and N. Kinomura, J. Solid State Chem. 182 (3), 547 (2009).

    Article  ADS  Google Scholar 

  31. M. W. Schmidt, L. W. Finger, R. J. Angel, and R. E. Dinnebier, Am. Mineral. 83 (7-8), 881 (1998).

    Article  ADS  Google Scholar 

  32. V. N. Serezhkin and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42 (7), 1064 (1997).

    Google Scholar 

  33. V. N. Serezhkin, L. B. Serezhkina, D. V. Pushkin, and A. V. Vologzhanina, Russ. J. Coord. Chem. 31 (10), 737 (2005).

    Article  Google Scholar 

  34. V. N. Serezhkin, L. B. Serezhkina, and D. V. Pushkin, Russ. J. Coord. Chem. 32 (3), 180 (2006).

    Article  Google Scholar 

  35. V. N. Serezhkin, M. O. Karasev, and L. B. Serezhkina, Radiochemistry 55 (2), 137 (2013).

    Article  Google Scholar 

  36. T. Yamanaka and H. Mori, Acta Crystallogr. B. 37 (5), 1010 (1981).

    Article  Google Scholar 

  37. M. Sugiyama, S. Endo, and K. Koto, Mineral. J. (Jpn) 13 (7), 455 (1987).

    Article  Google Scholar 

  38. N. L. Ross, J.-F. Shu, R. M. Hazen, and T. Gasparik, Am. Mineral. 75 (7-8), 739 (1990).

    Google Scholar 

  39. M. Murakami, K. Hirose, S. Ono, and Y. Ohishi, Geophys. Res. Lett. 30, 1207 (2003).

    Article  ADS  Google Scholar 

  40. D. M. Teter, R. J. Hemley, G. Kresse, and J. Hafner, Phys. Rev. Lett. 80 (10), 2145 (1998).

    Article  ADS  Google Scholar 

  41. J. S. Tse and D. D. Klug, Phys. Rev. Lett. 69, 3647 (1992).

    Article  ADS  Google Scholar 

  42. C. Rajappa, S. B. Sringeri, Y. Subramanian, and J. Gopalakrishnan, J. Chem. Phys. 140, 244512 (2014).

    Article  ADS  Google Scholar 

  43. N. R. Keskar and J. R. Chelikowsky, Phys. Rev. B 46 (1), 1.

  44. D. A. Kirzhnits, Usp. Fiz. Nauk 104 (3), 489 (1971).

    Article  Google Scholar 

  45. D. A. Kirzhnits, Yu. E. Lozovik, and G. V. Shpatakovskaya, Usp. Fiz. Nauk 117 (1), 3 (1975).

    Article  Google Scholar 

  46. V. E. Fortov, Extreme States of Matter (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  47. L. F. Lundegaard, C. Guillaume, M. I. McMahon, et al., J. Chem. Phys. 130, 164516 (2009).

    Article  ADS  Google Scholar 

  48. F. C. Hawthorne, R. Oberti, A. Zanetti, and V. K. Nayak, Can. Mineral. 46 (2), 455 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Serezhkin.

Additional information

Original Russian Text © V.N. Serezhkin, V.S. Urusov, 2017, published in Kristallografiya, 2017, Vol. 62, No. 1, pp. 43–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serezhkin, V.N., Urusov, V.S. Stereochemistry of silicon in oxygen-containing compounds. Crystallogr. Rep. 62, 50–59 (2017). https://doi.org/10.1134/S1063774517010229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774517010229

Navigation