Skip to main content
Log in

Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 − x R x F2 + x and R 1 − y M y F3 − y crystals (M = Ca, Sr, Ba; R are rare earth elements)

  • Reviews
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2-RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 − x R x F2 + x (CaF2 fluorite type) and R 1 − y M y F3 − y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative (M, R) and quantitative (x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 − x R x F2 + x phases (at 500 K) and by a factor of 106 in the R 1 − y M y F3 − y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MF m -RF n systems (m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 − x R x F2 + x and R 1 − y M y F3 − y nonstoichiometric phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. P. Sobolev, Crystallogr. Rep. 57(3), 434 (2012).

    ADS  Google Scholar 

  2. B. P. Sobolev, Crystal Growth (Nauka, Moscow, 1990), Vol.18, p. 233 [in Russian].

    Google Scholar 

  3. B. P. Sobolev, Crystals: Growth, Structure, Properties (Nauka, Moscow, 1993) [in Russian], p. 167.

    Google Scholar 

  4. B. P. Sobolev, Zh. Vses. Khim. O-va im. D. I. Mendeleeva 36(6), 726 (1991).

    Google Scholar 

  5. B. P. Sobolev, The Rare Earth Trifluorides, Part 1: The High Temperature Chemistry of Rare Earth Trifluorides (Institute of Crystallography, Moscow, and Institut d’Estudis Catalons, Barcelona, 2000) (www.books.google.ru/books/rare earth trifluorides).

    Google Scholar 

  6. B. P. Sobolev, The Rare Earth Trifluorides, Part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals (Institute of Crystallography, Moscow, and Institut d’Estudis Catalans, Barcelona, 2001) (www.books.google.ru/books/rare earth trifluorides).

    Google Scholar 

  7. A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (Izd-vo S.-PbGU, St. Petersburg, 2010), Vol. 2 [in Russian].

    Google Scholar 

  8. A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (Izd-vo S.-PbGU, St. Petersburg, 2010), Vol.2 [in Russian].

    Google Scholar 

  9. A. K. Ivanov-Shits and I. V. Murin, Solid-State Ionics (Izd-vo S.-PbGU, St. Petersburg, 2000), Vol.1 [in Russian].

    Google Scholar 

  10. T. Takahashi, H. Iwahara, and T. Ishikava, J. Electrochem. Soc. 124(2), 280 (1977).

    Google Scholar 

  11. B. P. Sobolev, E. G. Ippolitov, B. M. Zhigarnovskii, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 1(3), 362 (1965).

    Google Scholar 

  12. Yu. D. Tret’yakov, Chemistry of Nonstoichiometric Oxides (Mosk. Gos. Univ., Moscow, 1974) [in Russian].

    Google Scholar 

  13. A. A. Vedeneev. N. Potanin, RF Patent no. RU2187178 (5 October, 1999).

  14. M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).

    Google Scholar 

  15. P. P. Fedorov, Russ. J. Inorgan. Chem. 45(Suppl. 3), 268 (2000).

    Google Scholar 

  16. T. Vogt, Neues Jahrb. Mineral. 2(1), 9 (1914).

    MathSciNet  Google Scholar 

  17. T. Vogt, Z. Mineral. 15, 373 (1911).

    Google Scholar 

  18. V. M. Goldschmidt, T. Barth, G. Lunde, et al., Skrift Norske Vid. Acad. Oslo. I. Mat. -Nat. klasse. 1(2), 1 (1926).

    Google Scholar 

  19. D. M. Roy and R. Roy, Am. Ceram. Soc. Bull. 41(4), 221 (1962).

    Google Scholar 

  20. D. M. Roy and R. Roy, J. Electrochem. Soc. 111(4), 421 (1964).

    Google Scholar 

  21. J. A. A. Ketelaar and P. J. H. Willems, Rec. Trav. Chim. 56(1), 29 (1937).

    Google Scholar 

  22. E. Zintl and A. Udgard, Z. Anorg. Allg. Chem. 240(2), 150 (1939).

    Google Scholar 

  23. A. V. Chadwick, Solid State Ionics 8, 209 (1983).

    Google Scholar 

  24. O. Greis and M. S. R. Cader, Thermochim. Acta 87(1), 145 (1985).

    Google Scholar 

  25. M. Frant and J. Ross, Science 154(3736), 1553 (1966).

    ADS  Google Scholar 

  26. B. P. Sobolev, E. A. Krivandina, I. V. Murin, et al., USSR Inventor’s Certificate no. 311414 (31 November 1988).

  27. E. F. Sudakova, E. Ya. Alksnis, R. S. Perlovskii, et al., Symp. on Solid State Ionics, November 30–December 4, 1992, Boston, Abstr. Section U-6.5, p. 160.

  28. D. Jakes, J. Kaplan, V. Trnovcova, et al., III Asian Conf. on Solid State Ionics, Varanasi, November 1992, Ext. Abstrs., p. 147.

  29. N. I. Sorokin, E. F. Sudakova, E. A. Krivandina, et al., Elektrokhimiya 35(2), 239 (1999).

    Google Scholar 

  30. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, et al., Proc. All-Rusia Conf. “Sensor-2000”, St. Petersburg, June 21–23, 2000,, p. 322.

  31. A. A. Potanin, Zh. Ross. Khim. O-va im. D. I. Mendeleeva XLV(5–6), 58 (2001).

    Google Scholar 

  32. A. A. Potanin, RF Patent no. RU2295178 (21 April, 2005).

  33. C. Rongeat, M. Anji Reddy, R. Witter, et al., J. Phys. Chem. C (2013) (www.pubs.acs.org/JPCC).

    Google Scholar 

  34. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 50(3), 478 (2005).

    ADS  Google Scholar 

  35. B. P. Sobolev, I. A. Sviridov, V. I. Fadeeva, et al., Crystallogr. Rep. 53(5), 868 (2008).

    ADS  Google Scholar 

  36. P. P. Fedorov and B. P. Sobolev, Zh. Neorg. Khim. 24(4), 1038 (1979).

    Google Scholar 

  37. L. E. Nagel and M. O’Keeffe, Fast Ion Transport in Solids, Ed. by W. van Gool (North Holland, Amsterdam, 1973), p. 165.

  38. L. S. Garashina and B. P. Sobolev, Kristallografiya 16(2), 307 (1971).

    Google Scholar 

  39. M. Hofmann, S. Hull, G. J. McIntyre, et al., J. Phys.: Condens. Matter 9(4), 845 (1997).

    ADS  Google Scholar 

  40. B. P. Sobolev, D. N. Karimov, S. N. Sul’yanov, et al., Crystallogr. Rep. 54(1), 122 (2009).

    ADS  Google Scholar 

  41. B. P. Sobolev, P. P. Fedorov, D. V. Steinberg, et al., J. Solid State Chem. 17(2), 201 (1976).

    ADS  Google Scholar 

  42. B. P. Sobolev, Crystallogr. Rep. 47(Suppl. 1), 63 (2002).

    ADS  Google Scholar 

  43. N. I. Sorokin and M. W. Breiter, Solid State Ionics 99, 241 (1997).

    Google Scholar 

  44. N. I. Sorokin and M. W. Breiter, Solid State Ionics 104, 325 (1997).

    Google Scholar 

  45. N. I. Sorokin and M. W. Breiter, Solid State Ionics 116, 157 (1999).

    Google Scholar 

  46. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 43(4), 420 (2007).

    Google Scholar 

  47. V. I. Morozov, L. N. Tret’yakova, P. P. Fedorov, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 15(12), 2238 (1979).

    Google Scholar 

  48. I. V. Murin, O. V. Glumov, A. N. Murin, and B. P. Sobolev, Proc. VII All-Union Conf. on Physics and Chemistry of Ionic Melts and Solid Electrolytes. Vol. 3: Solid Electrolytes, September 18–20, 1979, p. 59.

  49. I. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Prikl. Khim. 53(4), 1474 (1980).

    Google Scholar 

  50. I. V. Murin, O. V. Glumov, I. G. Podkolzina, et al., Zh. Prikl. Khim. 55, 300 (1982).

    Google Scholar 

  51. E. Mariani, M. Svantner, P. Fjodorov, et al., Acta Phys. Slovaca 27(4), 260 (1977).

    Google Scholar 

  52. M. Svantner, E. Mariani, P. P. Fedorov, et al., Kristall Technik 14(3), 265 (1979).

    Google Scholar 

  53. P. P. Fedorov, T. M. Turkina, B. P. Sobolev, et al., Solid State Ionics 6(4), 331 (1982).

    Google Scholar 

  54. J. M. Reau, C. Lucat, G. Campet, et al., J. Solid State Chem. 17(12), 123 (1976).

    ADS  Google Scholar 

  55. K. E. Wapenaar, J. L. Van Koesveld, and J. Schoonman, Solid State Ionics 2, 145 (1981).

    Google Scholar 

  56. J. E. Bauerle, J. Phys. Chem. Solids 30(12), 2657 (1969).

    ADS  Google Scholar 

  57. A. K. Ivanov-Shits and N. I. Sorokin, Solid State Ionics 36, 7 (1989).

    Google Scholar 

  58. N. I. Sorokin, Elektrokhimiya 41(8), 1015 (2005).

    Google Scholar 

  59. N. I. Sorokin and B. P. Sobolev, Elektrokhimiya 44(9), 1111 (2008).

    Google Scholar 

  60. N. I. Sorokin, L. S. Garashina, E. A. Krivandina, et al., Proc. IX Nat. Conf on Crystal Growth, IK RAN, Moscow, October 16–20, 2000, p. 274.

  61. B. P. Sobolev and P. P. Fedorov, J. Less-Common Met. 60(1), 33 (1978).

    Google Scholar 

  62. B. P. Sobolev and K. B. Seiranian, J. Solid State Chem. 39(2), 337 (1981).

    ADS  Google Scholar 

  63. B. P. Sobolev and N. L. Tkachenko, J. Less-Common Met. 85(12), 155 (1982).

    Google Scholar 

  64. T. M. Turkina, P. P. Fedorov, and B. P. Sobolev, Kristallografiya 31(1), 146 (1986).

    Google Scholar 

  65. P. P. Fedorov, T. M. Turkina, V. A. Meleshina, and B. P. Sobolev, Crystal Growth (Nauka, Moscow, 1988), Vol.17, p. 198 [in Russian].

    Google Scholar 

  66. T. M. Turkina, Candidate’s Dissertation in Physics and Mathematics (IKAN, Moscow, 1993).

  67. N. I. Sorokin, T. M. Turkina, and B. P. Sobolev, Kristallografiya 37(6), 1566 (1992).

    Google Scholar 

  68. A. V. Chadwick, D. S. Hope, G. Jaroszkiewicz, et al., Fast Ion Transport in Solids, Ed. by P. Vashishta et al. (Elsevier North Holland, Amsterdam, 1979), p. 683.

  69. A. Roos, F. C. M. van de Pol, R. Keim, et al., Solid State Ionics 13, 191 (1984).

    Google Scholar 

  70. V. V. Sinitsyn, O. Lips, A. F. Privalov, et al., J. Phys. Chem. Solids 64, 1201 (2003).

    ADS  Google Scholar 

  71. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996).

    Google Scholar 

  72. N. I. Sorokin, Elektrokhimiya 42(7), 828 (2006).

    Google Scholar 

  73. R. D. Shannon, Acta Crystallogr. A 32(5), 751 (1976).

    ADS  MathSciNet  Google Scholar 

  74. J. A. Archer, A. V. Chadwick, I. R. Jack, et al., Solid State Ionics 9–10, 505 (1983).

    Google Scholar 

  75. P. Dorenbos, H. W. Den Hartog, R. Kruizinga, et al., Phys. Rev. B 35, 5774 (1987).

    ADS  Google Scholar 

  76. J. Meuldijk and H. W. Den Hartog, Phys. Rev. B 27, 6376 (1983).

    ADS  Google Scholar 

  77. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 37, 125 (1990).

    Google Scholar 

  78. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 31, 253 (1989).

    Google Scholar 

  79. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Solid State Ionics 31, 269 (1989).

    Google Scholar 

  80. V. B. Aleksandrov and L. S. Garashina, Dokl. Akad. Nauk SSSR, 189(2), 307 (1969).

    Google Scholar 

  81. A. K. Tsytsenko, O. V. Frank-Kamenetskaya, V. S. Fundamenskii, et al., Kristallografiya 36(2), 347 (1991).

    Google Scholar 

  82. N. G. Grigor’eva, B. A. Maksimov, L. P. Otroshchenko, et al., Kristallografiya 43(4), 601 (1998).

    Google Scholar 

  83. V. B. Aleksandrov, L. P. Otroshchenko, L. E. Fykin, et al., Kristallografiya 34(6), 1497 (1989).

    Google Scholar 

  84. L. E. Fykin, L. P. Otroschenko, V. B. Alexandrov, et al., Physica B 234, 121 (1997).

    ADS  Google Scholar 

  85. D. J. Bevan, O. Greis, and J. Strahle, Acta Crystallogr. A 36, 889 (1980).

    ADS  Google Scholar 

  86. L. A. Muradyan, B. A. Maksimov, and V. I. Simonov, Koord. Khim. 12(10), 1398 (1986).

    Google Scholar 

  87. A. M. Golubev and V. I. Simonov, Kristallografiya 31(3), 478 (1986).

    Google Scholar 

  88. A. K. Ivanov-Shitz, N. I. Sorokin, B. P. Sobolev, et al. Proc. 1st Inter. Symp. on Systems with the Ionic Transport, Bratislava (Czechoslovakia), 1985, p. 99.

  89. N. I. Sorokin, Kristallografiya 38(1), 233 (1993).

    Google Scholar 

  90. N. I. Sorokin, Abstr. Mater. Res. Soc. Symp. “Electrically Based Microstructural Characterization, Boston, MA, USA, 1996), p. 277.

  91. N. I. Sorokin, Crystallogr. Rep. 45(5), 799 (2000).

    ADS  Google Scholar 

  92. A. K. Ivanov-Shits, N. I. Sorokin, P. P. Fedorov, et al., Fiz. Tverd. Tela 25(6), 1748 (1983).

    Google Scholar 

  93. P. P. Fedorov and B. P. Sobolev, J. Less-Common Met. 63, 31 (1979).

    Google Scholar 

  94. N. I. Sorokin, A. M. Golubev, and B. P. Sobolev, Crystallogr. Rep. 59(2), 238 (2014).

    ADS  Google Scholar 

  95. N. I. Sorokin, Kristallografiya 36(6), 1468 (1991).

    MathSciNet  Google Scholar 

  96. I. Yu. Gotlib, I. V. Murin, E. M. Piotrovskaya, et al., Neorg. Mater. 37(9), 1144 (2001).

    Google Scholar 

  97. E. F. Khairetdinov, A. K. Ivanov-Shits, N. I. Sorokin, et al., Fiz. Tverd. Tela 28(8), 2546 (1986).

    Google Scholar 

  98. A. K. Ivanov-Shits, N. I. Sorokin, and A. I. Baranov, Fiz. Tverd. Tela 29(10), 3184 (1987).

    Google Scholar 

  99. N. I. Sorokin, Proc. All-Russia School for Young Scientists “Modern Aspects of Solid-State Electrochemistry”, NIFKhI, Moscow, October–November, 2009 (Izd-vo NIFKhI, Moscow, 2009), p. 168.

    Google Scholar 

  100. N. I. Sorokin, Elektrokhimiya 36(4), 497 (2000).

    MathSciNet  Google Scholar 

  101. N. I. Sorokin, Fiz. Tverd. Tela 32(10), 3154 (1990).

    MathSciNet  Google Scholar 

  102. G. A. Samara, Solid State Phys. 34(1), 1 (1984).

    MathSciNet  Google Scholar 

  103. J. Schoonman, Solid State Ionics 1, 121 (1980).

    Google Scholar 

  104. N. I. Sorokin, Fiz. Tverd. Tela 34(7), 2059 (1992).

    Google Scholar 

  105. C. R. A. Catlow, J. D. Comins, F. A. Germano, et al., Phys. Lett. A 71(1), 97 (1979).

    ADS  Google Scholar 

  106. P. E. Ngoepe and J. D. Comins, J. Phys. C: Solid State Phys. 19, L267 (1986).

    ADS  Google Scholar 

  107. C. R. A. Catlow, J. D. Comins, F. A. Germano, et al., J. Phys. C: Solid State Phys. 14(4), 329 (1981).

    ADS  Google Scholar 

  108. N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52(5), 842 (2007).

    ADS  Google Scholar 

  109. N. I. Sorokin and B. P. Sobolev, Kristallografiya 39(5), 889 (1994).

    Google Scholar 

  110. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Kristallografiya 41(2), 310 (1996).

    Google Scholar 

  111. N. I. Sorokin, M. V. Fominykh, V. I. Fistul’, et al., Fiz. Tverd. Tela 41(4), 638 (1999).

    Google Scholar 

  112. N. I. Sorokin, E. A. Krivandina, Z. I. Zhmurova, and B. P. Sobolev, Proc. ICSC, 2001, Obninsk. Russia, Vol. 1, p. 167.

  113. H. Geiger, G. Schon, and H. Stork, Solid State Ionics 15, 155 (1985).

    Google Scholar 

  114. O. E. Izotova and V. B. Aleksandrov, Dokl. Akad. Nauk SSSR, 192(5), 1037 (1970).

    Google Scholar 

  115. N. I. Sorokin, B. P. Sobolev, and M. W. Breiter, Elektrokhimiya 38(5), 585 (2002).

    Google Scholar 

  116. M. A. Denecke, W. Gunser, A. V. Privalov, et al., Solid State Ionics 52, 327 (1992).

    Google Scholar 

  117. E. A. Krivandina, Z. I. Zhmurova, B. P. Sobolev, et al., Kristallografiya 40(4), 741 (1995).

    Google Scholar 

  118. N. I. Sorokin, E. A. Krivandina, and Z. I. Zhmurova, Crystallogr. Rep. 58(6), 948 (2013).

    ADS  Google Scholar 

  119. A. I. Livshits, V. M. Buznik, P. P. Fedorov, et al., Neorg. Mater. 18(1), 135 (1982).

    Google Scholar 

  120. A. F. Privalov and I. V. Murin, Fiz. Tverd. Tela 41(9), 1616 (1999).

    Google Scholar 

  121. L. P. Otroshchenko, B. P. Aleksandrov, B. A. Maksimov, et al., Kristallografiya 30(4), 658 (1985).

    Google Scholar 

  122. S. F. Radaev, E. A. Krivandina, L. A. Muradyan, et al., Kristallografiya 36(2), 369 (1991).

    Google Scholar 

  123. A. P. Dudka, A. A. Loshmanov, and B. P. Sobolev, Kristallografiya 43(4), 605 (1998).

    ADS  Google Scholar 

  124. N. B. Bolotina, A. I. Kalyukanov, T. S. Chernaya, et al., Crystallogr. Rep. 58(4), 575 (2013).

    ADS  Google Scholar 

  125. B. P. Sobolev, V. B. Aleksandrov, P. P. Fedorov, et al., Kristallografiya 21(1), 96 (1976).

    Google Scholar 

  126. N. I. Sorokin and B. P. Sobolev, Phys. Solid State 50(3), 416 (2008).

    ADS  Google Scholar 

  127. J. M. Reau and J. Portier, Solid Electrolytes (Academic, New York, 1978), p. 313.

    Google Scholar 

  128. W. H. Zachariasen, Acta Crystallogr. 1(5), 265 (1948).

    Google Scholar 

  129. Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids, Ed. by A. Tressaud (Wiley, New York, 2010).

    Google Scholar 

  130. I. V. Murin, O. V. Glumov, D. V. Samusik, et al., Proc. II All-Union Conf. “Methods and Tool for Monitoring Atmospheric Contamination and Plant Emissions and Their Application, Leningrad, October 27–29, 1986, p. 45.

  131. I. V. Murin, O. V. Glumov, and D. B. Samusik, Zh. Prikl. Khim. 64(10), 2171 (1991).

    Google Scholar 

  132. M. S. Turaeva, N. I. Sorokin, and B. P. Sobolev, Proc. X Intern. Conf. on Solid State Ionics, Singapore, December 3–8, 1995, p. 355.

  133. N. I. Sorokin, M. V. Fominykh, E. A. Krivandina, et al., Proc. Int. Conf. “Glasses and Solid Electrolytes, St. Petersburg, May 17–19, 1999, p. 27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Sobolev.

Additional information

Dedicated to the International Year of Crystallography

Original Russian Text © B.P. Sobolev, N.I. Sorokin, 2014, published in Kristallografiya, 2014, Vol. 59, No. 6, pp. 891–915.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, B.P., Sorokin, N.I. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 − x R x F2 + x and R 1 − y M y F3 − y crystals (M = Ca, Sr, Ba; R are rare earth elements). Crystallogr. Rep. 59, 807–830 (2014). https://doi.org/10.1134/S1063774514060273

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774514060273

Keywords

Navigation