Skip to main content
Log in

Electron crystallography as an informative method for studying the structure of nanoparticles

  • Reviews
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The overwhelming majority of modern nanotechnologies deal with nanoparticles owing to the great variety of their unusual properties, which make them irreplaceable in various fields of science and technology. Since the physical properties of nanoparticles depend on their composition, structure, and shape, the problem of monitoring these parameters both after and during formation of nanoparticles is very important. Methods of electron crystallography are most informative and appropriate for studying and monitoring nanoparticle parameters. In this review, we briefly report the main modern methods based on the use of electron diffraction and electron microscopy, along with examples of their applications for nanoparticles, to solve a number of urgent structural problems of nanomaterials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. J. de Jongh, Physics and Chemistry of Metal Cluster Compounds (Kluwer, Dordrecht, 1994).

    Google Scholar 

  2. G. Schmid, Clusters and Colloids from Theory of Applications (VCH, Weinheim, 1994).

    Google Scholar 

  3. Nanoparrticles and Nanostructured Films, Ed. by J. H. Fendler (VCH, Weinheim, 1998).

    Google Scholar 

  4. T. Sugimoto, Fine Particles: Synthesis, Characterizations and Mechanisms of Growth (Marcel Dekker, New York, 2000).

    Google Scholar 

  5. L. M. Liz-Marzan and P. V. Kamat, Nanoscale Materials (Kluwer, Boston; MA, 2003).

    Google Scholar 

  6. N. Toshima, Encyclopedia of Nanoscience and Nanotechnology, Ed. by J. A. Scwarz et al. (Marcel Dekker, New York, 2004), p. 1869.

  7. Metal Nanoparticles: Synthesis, Preparation Control Technology, and Applications, Ed. by T. Yonezawa (Gijutsu Joho Kyokai, Tokyo, 2004).

    Google Scholar 

  8. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Google Scholar 

  9. A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  10. W. P. Halperin, Rev. Mod. Phys. 58, 533 (1986); A. P. Alivisatos, Science 271, 933 (1996).

    ADS  Google Scholar 

  11. M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, et al., J. Am. Chem. Soc. 110, 3046 (1988).

    Google Scholar 

  12. V. L. Colvin, A. N. Goldstein, and A. P. Alivisatos, J. Am. Chem. Soc. 114, 5221 (1992).

    Google Scholar 

  13. M. A. Olshavsky, A. N. Goldstein, and A. P. Alivisatos, J. Am. Chem. Soc. 112, 9438 (1990).

    Google Scholar 

  14. C. F. Landes, S. Link, M. B. Mohamed, et al., Pure. Appl. Chem. 74, 1675 (2002); X. Peng, L. Manna, W. Yang, et al., Nature 404, 59 (2000).

    Google Scholar 

  15. S. P. Gubin, G. Yu. Yurkov, and N. A. Kataeva, Noble-Metal Nanoparticles and Materials on Their Basis (Azbuka, Moscow, 2006) [in Russian].

    Google Scholar 

  16. C. J. Murphy, T. K. Sau, A. M. Gole, et al., J. Phys. Chem. B 109, 13857 (2005).

    Google Scholar 

  17. T. Kijima, T. Yoshimura, M. Uota, et al., Angew. Chem. Int. Ed. 43, 228 (2004).

    Google Scholar 

  18. Y. Gao, P. Jiang, D. F. Liu, et al., Chem. Phys. Lett. 380, 146 (2003).

    ADS  Google Scholar 

  19. Q. Ma, E. F. Remsen, T. Kowalewski, et al., J. Am. Chem. Soc. 123, 4627 (2001).

    Google Scholar 

  20. J. F. Hicks, S. Young, and R. W. Murray, Langmuir 18, 2288 (2002).

    Google Scholar 

  21. H. X. He, H. Zhang, Q. G. Li, et al., Langmuir 16, 3846 (2000).

    Google Scholar 

  22. B. Kim, S. T. Tripp, and A. Wei, J. Am. Chem. Soc. 123, 7955 (2001).

    Google Scholar 

  23. M. Giersig and P. Mulvaney, J. Phys. Chem. 97, 6334 (1993).

    Google Scholar 

  24. T. Maddanimath, A. Kumar, J. D’Arcy-Gall, et al., Chem. Commun. 1435 (2005).

    Google Scholar 

  25. C. Gammer, C. Mangler, C. Rentenberger, et al., Scr. Mater. 63, 312 (2010).

    Google Scholar 

  26. L. U. Qianghua, Y. A. O. Kailun, X. I. Dong, et al., J. Mater. Sci. Technol. 23(2), 189 (2007).

    Google Scholar 

  27. C. W. B. Grigson, Rev. Sci. Instrum. 36, 1587 (1965).

    ADS  Google Scholar 

  28. P. N. Denbigh and D. V. Dove, J. Appl. Phys. 38(1), 99 (1967).

    ADS  Google Scholar 

  29. R. B. Neder et al., Phys. Status Solidi C 4, 3221 (2007).

    ADS  Google Scholar 

  30. R. B. Neder et al., J. Phys.: Condens. Matter 17, S125 (2005).

    ADS  Google Scholar 

  31. M. Malac, F. Wang, R. Egerton, et al., Microsc. Microanal. 13(Suppl. 2), 558CD (2007).

    Google Scholar 

  32. C. Dwyer, A. I. Kirkland, P. Hartel, et al., Appl. Phys. Lett. 90, 151104 (2007).

    ADS  Google Scholar 

  33. J. M. Cowley, Microsc. Res. Tech. 46(2), 75 (1999); Electron Microsc. 45, 3 (1996).

    Google Scholar 

  34. J. M. Cowley, Ultramicroscopy 90(2), 197 (2002).

    Google Scholar 

  35. D. Alloyeaua, C. Ricolleaua, T. Oikawa, et al., Ultramicroscopy 108, 656 (2008).

    Google Scholar 

  36. M. J. Behr, K. A. Mkhoyan, and E. S. Aydil, Carbon 48, 3840 (2010).

    Google Scholar 

  37. Z. H. Yu, M. A. Hahn, S. E. Maccagnano-Zacher, et al., ACS Nano 2(6), 1179 (2008).

    Google Scholar 

  38. R. V. Petrova, R. R. Vanfleet, D. R. Richardson, et al., Microsc. Microanal. 11(Suppl. 2), 782 (2005).

    Google Scholar 

  39. R. Vincent and P. A. Midgley, Ultramicroscopy 53, 271 (1994).

    Google Scholar 

  40. C. S. Own, W. Sinkler, and L. D. Marks, Ultramicroscopy 107, 534 (2007).

    Google Scholar 

  41. A. P. Dudka, A. S. Avilov, and S. Nikolopoulos, Ultramicroscopy 107, 474 (2007).

    Google Scholar 

  42. A. Avilov, K. Kuligin, S. Nicolopoulos, et al., Ultramicroscopy 107, 431 (2007).

    Google Scholar 

  43. E. Mugnaioli, I. Andrusenko, T. Schuler, et al., Angew. Chem. Int. Ed. 51, 7041 (2012).

    Google Scholar 

  44. E. Mugnaioli, S. J. Sedlmaier, O. Oeckler, et al., Eur. J. Inorg. Chem. 121 (2012).

    Google Scholar 

  45. I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, et al., Mineral. Mag. 74(1), 159 (2010).

    Google Scholar 

  46. G. Bellussi, E. Montanari, E. Di Paola, et al., Angew. Chem. Int. Ed. 51, 666 (2012).

    Google Scholar 

  47. E. Sarakinou, E. Mugnaioli, Ch. B. Lioutas, et al., Semicond. Sci. Technol. 27, 105003 (2012).

    ADS  Google Scholar 

  48. I. Andrusenko, E. Mugnaioli, T. E. Gorelik, et al., Acta Crystallogr. B 67, 218 (2011).

    Google Scholar 

  49. E. Barborini, C. Ducati, M. Leccardi, et al., Jpn. J. Appl. Phys. 50, 01AK01 (2011).

    Google Scholar 

  50. B. Cao, T. Xi, and D. Hui, Metalurgija-MJoM 17(2), 79 (2011).

    Google Scholar 

  51. R. R. Keller and R. H. Geiss, J. Microsc. 245, 245 (2012).

    Google Scholar 

  52. B. K. Vainshtein, Structural Electron Diffraction (Izdvo Akad. Nauk SSSR, Moscow, 1956) [in Russian].

    Google Scholar 

  53. U. Kolb, E. Mugnaioli, and T. E. Gorelik, Cryst. Res. Technol. 6, 542 (2011).

    Google Scholar 

  54. J. R. Jinschek et al., Ultramicroscopy 108, 589 (2008).

    Google Scholar 

  55. I. Arslan, J. C. Walmsley, E. Rytter, et al., J. Am. Chem. Soc. 130, 5716 (2008); L. Cervera Gontard, R. E. Dunin-Borkowski, R. K. K. Chong, et al., J. Phys.: Conf. Ser. 26, 203 (2006).

    Google Scholar 

  56. A. B. Hungrídotless, B. H. Juárez, C. Klinke, et al., Nano Res. 1, 89 (2008); Y. Liang, Y. Wu, S.-T. Feng, et al., J. Am. Chem. Soc. 131, 56S (2008); Z. Aghi, D. J. Holland, R. Leary, et al., Nano Lett. 11, 4666 (2011).

    Google Scholar 

  57. L. C. Gontard, R. E. Dunin-Borkowski, M. H. Gass, et al., J. Electron Microsc. 58(3), 167 (2009).

    Google Scholar 

  58. V. H. Mareau et al., Macromolecules 40(25), 9032 (2007).

    ADS  Google Scholar 

  59. K. Gries, R. Kröger, C. Kübel, et al., Acta Biomater. 5(8), 3038 (2009).

    Google Scholar 

  60. M. C. Scott, Ch.-Ch. Chen, M. Mecklenburg, et al., Nature 483, 444 (2012).

    ADS  Google Scholar 

  61. Z. Saghi and P. A. Midgley, Ann. Rev. Mater. Res. 42, 59 (2012).

    ADS  Google Scholar 

  62. P. A. Midgley, E. P. W. Ward, A. B. Hungria, et al., Chem. Soc. Rev. 36, 1477 (2007).

    Google Scholar 

  63. S. van Aert, K. J. Batenburg, M. D. Rossell, et al., Nature 470, 374 (2011).

    ADS  Google Scholar 

  64. D. Gabor, Nature 4098, 777 (1948).

    ADS  Google Scholar 

  65. J. M. Cowley, Ultramicroscopy 41, 335 (1992).

    Google Scholar 

  66. H. Lichte, D. Geiger, and M. Linck, Philos. Trans. R. Soc. 367(1903), 3773 (2009).

    ADS  Google Scholar 

  67. M. Gajdardziska-Josifovska et al., Ultramicroscopy 50, 285 (1993); J. Cai and F. A. Ponce, Phys. Status Solidi 192, 407 (2002).

    Google Scholar 

  68. M. Stevens, F. A. Ponce, et al., Appl. Phys. Lett. 85, 4651 (2004).

    ADS  Google Scholar 

  69. K. Yamamoto, S. A. Majetich, M. Sachan, et al., Microsc. Microanal. 13(Suppl. 2), 1218 CD (2007); L. T. Kuhn, R. J. Harrison, T. Kasama, et al., Proc. IMC16, Sapporo, 2006; M. Nakanishi et al., Mater. Trans. 48 (10), 2599 (2007); R. E. Dunin-Borkovski, T. Kasama, et al., Microsc. Res. Tech. 64, 390 (2004); L. Li, D. J. Smith, E. Dailey, et al., Nano Lett. 11, 493 (2011).

    Google Scholar 

  70. K. K. Koziol, T. Kasama, R. E. Dunin-Borkowski, et al., Mater. Res. Soc. Symp. Proc. 962, 0962–P13-03 (2007).

    Google Scholar 

  71. L. Li, D. J. Smith, E. Dailey, et al., Nano Lett. 11, 493 (2011).

    ADS  Google Scholar 

  72. R. Popescu, E. Müller, M. Wanner, et al., Phys. Rev. B 76, 235411 (2007).

    ADS  Google Scholar 

  73. J. Cumings, A. Zett, McCartney, et al., Phys. Rev. Lett. 88(5), 056804-1 (2002).

    ADS  Google Scholar 

  74. Y. Gao, D. Shindo, Y. Bao, et al., Appl. Phys. Lett. 90, 233105-1 (2007).

    ADS  Google Scholar 

  75. J. M. Zuo, I. Vartanyants, M. Gao, et al., Science 300, 1419 (2004).

    ADS  Google Scholar 

  76. R. W. Gerchberg and W. O. Saxton, Optik 35, 237 (1972).

    Google Scholar 

  77. J. Miao, P. Charalambous, J. Kirz, et al., Nature 15, 342 (1999).

    ADS  Google Scholar 

  78. D. Sayre, Acta Crystallogr. A 5, 843 (1952).

    Google Scholar 

  79. J. Fienup, Appl. Opt. 21, 2758 (1982).

    ADS  Google Scholar 

  80. W. J. Huang, J. M. Zuo, B. Jiang, et al., Nature Phys. 5, 129 (2009).

    ADS  Google Scholar 

  81. A. A. Ischenko, V. V. Golubkov, V. P. Spiridonov, et al., Appl. Phys. B 32, 161 (1983); A. P. Rood and J. Milledge, J. Chem. Soc. Faraday Trans. 2, 1145 (1984); J. D. Ewbank, L. Schafer, and A. A. Ischenko, J. Mol. Struct. 534, 1 (2000).

    ADS  Google Scholar 

  82. A. H. Zewail, Ann. Rev. Phys. Chem. 57, 65 (2006).

    ADS  Google Scholar 

  83. A. A. Ishchenko, V. N. Bagratashvili, and A. S. Avilov, Crystallogr. Rep. 56(5), 751 (2011).

    ADS  Google Scholar 

  84. A. H. Zewail and J. M. Thomas, 4D Electron Microscopy (Imperial College, 2010); S. J. L. Billinge and L. Levine, Science 316, 560 (2007).

    Google Scholar 

  85. V. A. Lobastov, R. Srinivasan, F. Vigliotti, et al., UltraFast Optics IV. Springer Series in Optical Sciences, Ed. by F. Krausz et al. (Springer, Berlin, 2003), p. 413; J. M. Thomas, Angew. Chem. Int. Ed. 43, 2606 (2004).

  86. C.-Y. Ruan, Y. Murooka, R. K. Raman, et al., Microsc. Microanal. 15, 323 (2009).

    ADS  Google Scholar 

  87. R. K. Raman, Y. Murooka, C.-Y. Ruan, et al., Phys. Rev. Lett. 101, 077401 (2008).

    ADS  Google Scholar 

  88. C.-Y. Ruan, Y. Murooka, R. K. Raman, et al., Nano Lett. 7(5), 1290 (2007); Phys. Rev. Lett. 101, 077401 (2008).

    ADS  Google Scholar 

  89. T. LaGrange, G. H. Campbell, P. E. A. Turchi, et al., Acta Mater. 55, 5211 (2007).

    Google Scholar 

  90. N. A. Anderson and T. Lian, An. Rev. Phys. Chem. 56, 491 (2005); R. A. Murdick, R. K. Raman, Y. Murooka, et al., Phys. Rev. B 77, 24532991 (2007); C.-Y. Ruan, Y. Murooka, R. K. Raman, et al., Microsc. Microanal. 15, 323 (2009).

    ADS  Google Scholar 

  91. W. Wang, T. Lee, and M. A. Reed, Rep. Prog. Phys. 68, 523 (2005).

    ADS  Google Scholar 

  92. R. K. Raman, R. A. Murdick, F. J. Worhatch, et al., Phys. Rev. Lett. 104, 123401 (2010).

    ADS  Google Scholar 

  93. J. Kanasaki, E. Inami, K. Tanimura, et al., Phys. Rev. Lett. 102, 087402 (2009).

    ADS  Google Scholar 

  94. P. Baum and A. H. Zewail, Proc. Natl. Acad. Sci. USA 104, 18409 (2007).

    ADS  Google Scholar 

  95. F. Hubert, F. Testard, G. Rizza, et al., Langmuir 26(10), 6887 (2010); K. Simeonidis, S. Mourdikoudis, A. Vilalta-Clemente, et al., Proc. Phys. Adv. Mater. Winter School, 2008); J. Yang, L. Levina, E. H. Sargent, et al., J. Mater. Chem. 16, 4025 (2006); S. Sepulveda-Guzman, N. Elizondo-Villarreal, D. Ferrer, et al., Nanotechnology 18, 335604 (2007).

    Google Scholar 

  96. Analytical Electron Microscopy of Gold Nanoparticles on Ceria, Titania, and Ceria-Titania Materials, Ed. by A. C. Sónia et al. (FORMATEX, 2010). p. 1830.

    Google Scholar 

  97. H. Kumarakuru, D. Cherns, M. G. Montes de Oca, et al., J. Phys: Conf. Ser. 371, 012025 (2012).

    ADS  Google Scholar 

  98. P. Billaud, S. Marhaba, E. Cottancin, et al., J. Phys. Chem. C 112, 978 (2008).

    Google Scholar 

  99. S. Kang, S. Shi, Zh. Jia, et al., Appl. Phys. 101, 09J113 (2007).

    Google Scholar 

  100. D. K. Dwivedi, Dayashankar, and M. Dubey, J. Ovonic Res. 6(1), 57 (2010).

    Google Scholar 

  101. M. A. Olson, A. Coskun, R. Klajn, et al., Nano Lett. 9(9), 3185 (2009).

    ADS  Google Scholar 

  102. V. L. Gayou, B. S. Hernandez, R. D. Macuil, et al., J. Nano Res. 9, 125 (2010); R. D. Tilley, Chem. New Zealand, 146 (2008).

    Google Scholar 

  103. N. Pugazhenthiran, S. Anandan, G. Kathiravan, et al., J. Nanopart. Res. 11, 1811 (2009); M. G. Guzman, J. Dille, and S. Godt, World Acad. Sci. Eng. Technol. 43, 357 (2008).

    Google Scholar 

  104. S. M. Moldovan, H. Bulou, Y. J. Dappe, et al., J. Phys. Chem. C 116(16), 9274 (2012).

    Google Scholar 

  105. P. Moravec, J. Smolík, H. Keskinen, et al., Mater. Sci. Appl. 2, 258 (2011); S. Singh and S. B. Krupanidhi, Curr. Nanosci. 5, 489 (2009); Q. Zhang, J. Xie, J. Y. Lee, et al., 4 (8), 1067 (2008); Q. Zhang, J. Y. Lee, J. Yang, et al., Nanotechnology 18, 245605 (2007); D. S. Jacob, I. Genish, L. Klein, et al., J. Phys. Chem. Lett. B 110 (36), 17711 (2006).

    Google Scholar 

  106. S. Asahina, S. Takami, T. Otsuka, et al., Chem. Cat. Chem. Special Issue: Adv. Microsc. 3(6), 1038 (2011).

    Google Scholar 

  107. J. Tang, Z. Li, Q. Xia, and R. S. Williams, Langmuir Lett. 25(13), 7222 (2009).

    Google Scholar 

  108. H. Yao and K. Kimura, Modern Research and Educational Topics in Microscopy, Ed. by A. Méndez-Vilas and J. Díaz (FORMATEX, 2007), p. 568.

  109. R. J. Barsotti, M. D. Vahey, R. Wartena, et al., 3(3), 488 (2007).

  110. N. Ghinwa, H. Sabahudin, M. Keith, et al., J. Microsc. Res. Tech. 71(10), 742 (2008).

    Google Scholar 

  111. C. C. Berry, S. Wells, S. Charles, et al., Biomaterials 24(250, 4551 (2003).

    Google Scholar 

  112. K. L. Bunker, J. L. Sturgeon, T. L. Lersch, et al., Microsc. Microanal. 16, 668 (2010).

    ADS  Google Scholar 

  113. S. J. Pennycook, Ultramicroscopy 30, 58 (1989).

    Google Scholar 

  114. X. F. Xhang, Microsc. Today 19(5), 26 (2011).

    Google Scholar 

  115. I. Florea, A. Demortuire, C. Petit, et al., Nanoscale 4, 5125 (2012).

    ADS  Google Scholar 

  116. L. C. Gontard, R. E. Dunin-Borkowski, M. H. Gass, et al., J. Electron Microsc. 58(3), 167 (2009).

    Google Scholar 

  117. D. Wang, H. L. Xin, R. Hovden, et al., Nature Mater. 12, 81 (2013).

    ADS  Google Scholar 

  118. S. van Aert, A. de Backer, G. T. Martinez, et al., (APS) Phys. Rev. B 8(6), 064107 (2013).

    Google Scholar 

  119. M. Ryvolova, J. Chomoucka, J. Drbohlavova, et al., Sensors. 12, 14792 (2012).

    Google Scholar 

  120. A. Ponce, S. Mejna-Rosales, and M. Jos-Yacam, Methods Mol. Biol. 906, 453 (2012).

    Google Scholar 

  121. M. Sankar, N. Dimitratos, P. J. Miedziak, et al., J. Chem. Soc. Rev. 41, 8099 (2012).

    Google Scholar 

  122. J. C. Yang, M. W. Small, R. V. Grieshaber, et al., Chem. Soc. Rev. 41, 8179 (2012).

    Google Scholar 

  123. B. G. Mendis and A. J. Craven, Ultramicroscopy 111(3), 212 (2009).

    Google Scholar 

  124. A. L. Koh, K. Bao, I. Khan, et al., ACS Nano 3(10), 3015 (2009).

    Google Scholar 

  125. J. Nelayah, M. U. Kociak, O. Strephan, et al., Nature Phys. 3, 348 (2007).

    ADS  Google Scholar 

  126. He, Y. Liu, J. Liu, et al., Angew. Chem. Int. Ed. 52, 1 (2013).

    Google Scholar 

  127. He, P. D. Nellist, S. Lozano-Perez, et al., J. Phys.: Conf. Ser. 371, 012027 (2012).

    ADS  Google Scholar 

  128. R. Leary, Z. Saghi, M. Armbrüster, et al. J. Phys: Conf. Ser. 371, 012024 (2012).

    ADS  Google Scholar 

  129. F. L. Deepak, G. Casillas-Garcia, R. Esparza, et al., J. Cryst Growth 325(1), 60 (2011).

    ADS  Google Scholar 

  130. L. Gan, R. Yu, J. Luo, et al., J. Phys. Chem. Lett. 3(7), 934 (2012).

    Google Scholar 

  131. P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, et al., Nature 469, 389 (2011).

    ADS  Google Scholar 

  132. L. Dong, J. Hansen, P. Xu, et al., Appl. Phys. Lett. 101, 061601 (2012).

    ADS  Google Scholar 

  133. M. S. Moldovan, H. Bulou, Y. J. Dappe, et al., J. Phys. Chem. 116(16), 9274 (2012).

    Google Scholar 

  134. O. Cretu, J. A. Rodrnguez-Manzo, A. Demorti, et al., Carbon 50(1), 259 (2012).

    Google Scholar 

  135. A. B. Hungría, B. H. Juárez, C. Klinke, et al., Nano Res. 1, 89 (2008).

    Google Scholar 

  136. U. M. Bhatta, I. M. Ross, Z. Saghi, et al., J. Phys.: Conf. Ser. 371, 012007 (2012).

    ADS  Google Scholar 

  137. M. Delalande, M. J.-F. Guinel, L. F. Allard, et al., J. Phys. Chem. 116, 6866 (2012).

    Google Scholar 

  138. T. Akita, K. Tanaka, M. Kohyamaa, et al., Surf. Interface Anal. 40, 1760 (2008).

    Google Scholar 

  139. M. A. Asoro, D. Kovar, Y. Shao-Horn, et al., Nanotechnology 21, 025701-1 (2010).

    ADS  Google Scholar 

  140. K. van Benthem, A. R. Lupini, M. Kim, et al., Appl. Phys. Lett. 87, 034104 (2005); A. Y. Borisevich, A. R. Lupini, and S. J. Pennycook, Proc. Natl. Acad. Sci. USA 103, 3044 (2006); A. Hashimoto, P. Wang, M. Shimojo, et al., Appl. Phys. Lett. 101, 253108 (2012).

    ADS  Google Scholar 

  141. P. Wang, G. Behan, M. Takeguchi, et al., Phys. Rev. Lett. 104, 200801 (2010).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Avilov.

Additional information

Original Russian Text © A.S. Avilov, S.P. Gubin, M.A. Zaporozhets, 2013, published in Kristallografiya, 2013, Vol. 58, No. 6, pp. 785–803.

On the 70th Anniversary of the Shubnikov Institute of Crystallography of the Russian Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avilov, A.S., Gubin, S.P. & Zaporozhets, M.A. Electron crystallography as an informative method for studying the structure of nanoparticles. Crystallogr. Rep. 58, 788–804 (2013). https://doi.org/10.1134/S1063774513060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774513060059

Keywords

Navigation