Skip to main content
Log in

Internal friction and physicomechanical properties of solids

  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Different aspects of applying the physical acoustics methods (in particular, internal friction method) in mechanics, optics, and radiation solid-state physics are considered. The results of acoustic experiments in situ upon plastic deformation and under the irradiation of crystals by high-energy (8 MeV) protons are discussed. The acoustic technique for studying the microplasticity of solids in a wide range of vibrational stress amplitudes is described. An example of studying the acoustooptic interactions in the defect structure of a wide-gap HgI2 semiconductor crystal is shown. The possibility of using acoustic measurements for investigating the mechanisms of brittle-ductile transition in bcc alloys is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Indenbom and V. M. Chernov, Phys. Status Solidi A 14, 347 (1972).

    Article  Google Scholar 

  2. V. L. Indenbom and V. M. Chernov, in Elastic Strain Fields and Dislocation Mobility, Ed. by V. L. Indenbom and J. Lothe (North Holland, Amsterdam, 1992), p. 517.

    Google Scholar 

  3. A. B. Lebedev, S. I. Bakholdin, V. I. Ivanov, and B. K. Kardashev, Internal Friction in Metals and Inorganic Materials (Nauka, Moscow, 1982), p. 35 [in Russian].

    Google Scholar 

  4. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Anelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  5. A. B. Lebedev, S. B. Kustov, and B. K. Kardashev, Fiz. Tverd. Tela (Leningrad) 24, 3169 (1982) [Sov. Phys. Solid State 24, 1798 (1982)].

    Google Scholar 

  6. A. B. Lebedev, S. B. Kustov, and B. K. Kardashev, Fiz. Tverd. Tela (Leningrad) 29, 3563 (1987) [Sov. Phys. Solid State 29, 2041 (1987)].

    Google Scholar 

  7. B. K. Kardashev and S. P. Nikanorov, Mater. Sci. Forum 119–121, 221 (1993).

    Article  Google Scholar 

  8. V. M. Chernov, B. K. Kardashev, L. M. Krjukova, et al., J. Nucl. Mater. 257, 263 (1998).

    Article  ADS  Google Scholar 

  9. V. I. Betekhtin, A. G. Kadomtsev, and B. K. Kardashev, Fiz. Tverd. Tela (St. Petersburg) 48, 1421 (2006) [Phys. Solid State 48, 1506 (2006)].

    Google Scholar 

  10. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, et al., Int. J. Appl. Cer. Technol. 1, 1 (2004).

    Google Scholar 

  11. B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, et al., Fiz. Tverd. Tela (St. Petersburg) 46, 1811 (2005).

    Google Scholar 

  12. B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, et al., Fiz. Tverd. Tela (St. Petersburg) 47, 860 (2005) [Phys. Solid State 47, 886 (2005)].

    Google Scholar 

  13. B. K. Kardashev, B. I. Smirnov, A. R. de Arellano-Lopez, et al., Mater. Sci. Eng., A 442, 444 (2006).

    Article  Google Scholar 

  14. B. K. Kardashev, V. M. Chernov, O. A. Plaksin, et al., J. Alloys Compd. 310, 102 (2000).

    Article  Google Scholar 

  15. B. K. Kardashev, P. V. Demenkov, O. A. Plaksin, et al., Fiz. Tverd. Tela (St. Petersburg) 43, 2003 (2001) [Phys. Solid State 43, 2087 (2001)].

    Google Scholar 

  16. V. A. Stepanov and P. A. Stepanov, Opt. Spektrosk. 85, 974 (1998) [Opt. Spectrosc. 85, 893 (1998)].

    Google Scholar 

  17. O. A. Plaksin, V. A. Stepanov, P. A. Stepanov, et al., J. Nucl. Mater. 233–237, 1355 (1996).

    Article  Google Scholar 

  18. B. K. Kardashev, S. N. Golyandin, S. B. Kustov, and V. M. Zaletin, Fiz. Tverd. Tela (St. Petersburg) 34, 2148 (1992) [Sov. Phys. Solid State 34, 1149 (1992)].

    Google Scholar 

  19. B. K. Kardashev, J. Alloys Compd. 211/212, 160 (1994).

    Article  Google Scholar 

  20. B. K. Kardashev, A. V. Rezvushkin, P. A. Stepanov, et al., Fiz. Tverd. Tela (St. Petersburg) 38, 1511 (1996) [Phys. Solid State 38, 832 (1996)].

    Google Scholar 

  21. B. K. Kardashev, V. M. Zaletin, and V. I. Fomin, RF Patent 2065180, 1996.

  22. B. K. Kardashev, J. Phys. IV, Colloque C8 6, 871 (1996).

    Google Scholar 

  23. B. K. Kardashev, V. A. Stepanov, P. A. Stepanov, and V.M. Chernov, Fiz. Tverd. Tela (St. Petersburg) 41, 1965 (1999) [Phys. Solid State 41, 1801 (1999)].

    Google Scholar 

  24. B. K. Kardashev, J. Alloys Compd. 310, 153 (2000).

    Article  Google Scholar 

  25. B. K. Kardashev, Fiz. Tverd. Tela (St. Petersburg) 42, 1789 (2000) [Phys. Solid State 42, 1835 (2000)].

    Google Scholar 

  26. B. K. Kardashev, A. S. Nefagin, G. N. Ermolaev, et al., Pis’ma Zh. Tekh. Fiz. 32, 44 (2006).

    Google Scholar 

  27. B. K. Kardashev and V. M. Chernov, Fiz. Tverd. Tela (St. Petersburg) 50, 820 (2008) [Phys. Solid State 50, 854 (2008)].

    Google Scholar 

  28. B. K. Kardashev and V. M. Chernov, Mater. Sci. Eng. (2009) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Kardashev.

Additional information

Dedicated to the memory of V.L. Indenbom

Original Russian Text © B.K. Kardashev, 2009, published in Kristallografiya, 2009, Vol. 54, No. 6, pp. 1074–1086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kardashev, B.K. Internal friction and physicomechanical properties of solids. Crystallogr. Rep. 54, 1021–1032 (2009). https://doi.org/10.1134/S1063774509060170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774509060170

Keywords

Navigation