Skip to main content
Log in

Collisional Pumping of H\({}_{2}\)O and СH\({}_{3}\)OH Masers in C-Type Shock Waves

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The collisional pumping of H\({}_{2}\)O and СH\({}_{3}\)OH masers in magnetohydrodynamic nondissociative C-type shocks is considered. A grid of C-type shock models with speeds in the range 5–70 km s\({}^{-1}\) and preshock gas densities \(n_{\textrm{H}_{2},0}=10^{4}\)\(10^{7}\) cm\({}^{-3}\) is constructed. The large velocity gradient approximation is used to solve the radiative transfer equation in molecular lines. The para-H\({}_{2}\)O 183.3 GHz and ortho-H\({}_{2}\)O 380.1 and 448.0 GHz transitions are shown to be inverted and to have an optical depth along the shock velocity \(|\tau|\sim 1\) at relatively low gas densities in the maser zone, \(n_{\textrm{H}_{2}}\gtrsim 10^{5}\)\(10^{6}\) cm\({}^{-3}\). Higher gas densities, \(n_{\textrm{H}_{2}}\gtrsim 10^{7}\) cm\({}^{-3}\), are needed for efficient pumping of the remaining H\({}_{2}\)O masers. Simultaneous generation of H\({}_{2}\)O and class I СH\({}_{3}\)OH maser emission in a shock is possible at preshock gas densities \(n_{\textrm{H}_{2},0}\approx 10^{5}\) cm\({}^{-3}\) and shock speeds in the range \(u_{\textrm{s}}\approx 17.5{-}22.5\) km s\({}^{-1}\). The possibility of detecting class I СH\({}_{3}\)OH and para-H\({}_{2}\)O 183.3 GHz masers in star-forming regions and near supernova remnants is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. C. A. Boogert, P. A. Gerakines, and D. C. B. Whittet, Ann. Rev. Astron. Astrophys. 53, 541 (2015).

    Article  ADS  Google Scholar 

  2. J. Cernicharo, C. Thum, H. Hein, D. John, P. Garcia, and F. Mattioco, Astron. Astrophys. 231, L15 (1990).

    ADS  Google Scholar 

  3. J. Cernicharo, E. González-Alfonso, J. Alcolea, R. Bachiller, and D. John, Astrophys. J. 432, L59 (1994).

    Article  ADS  Google Scholar 

  4. J. Cernicharo, R. Bachiller, and E. González-Alfonso, Astron. Astrophys. 305, L5 (1996).

    ADS  Google Scholar 

  5. J. Cernicharo, J. R. Pardo, E. González-Alfonso, E. Serabyn, T. G. Phillips, D. J. Benford, and D. Mehringer, Astrophys. J. 520, L131 (1999).

    Article  ADS  Google Scholar 

  6. M. J. Claussen, W. M. Goss, and D. A. Frail, Astron. J. 117, 1387 (1999).

    Article  ADS  Google Scholar 

  7. R. M. Crutcher, B. Wandelt, C. Heiles, E. Falgarone, and T. H. Troland, Astrophys. J. 725, 466 (2010).

    Article  ADS  Google Scholar 

  8. A. Dalgarno, Proc. Natl. Acad. Sci. U. S. A. 103, 12269 (2006).

    Article  ADS  Google Scholar 

  9. F. Daniel and J. Cernicharo, Astron. Astrophys. 553, A70 (2013).

    Article  ADS  Google Scholar 

  10. F. Daniel, A. Faure, P. J. Dagdigian, M.-L. Dubernet, F. Lique, and G. Pineau des Forêts, Mon. Not. R. Astron. Soc. 446, 2312 (2015).

    Article  ADS  Google Scholar 

  11. E. F. van Dishoeck, E. Herbst, and D. A. Neufeld, Chem. Rev. 113, 9043 (2013).

    Article  Google Scholar 

  12. S. D. Doty, Astrophys. J. 535, 907 (2000).

    Article  ADS  Google Scholar 

  13. B. T. Draine and C. F. McKee, Ann. Rev. Astron. Astrophys. 31, 373 (1993).

    Article  ADS  Google Scholar 

  14. A. E. Dudorov, Sov. Astron. 35, 342 (1991).

    ADS  Google Scholar 

  15. M. Elitzur, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 346, 983 (1989).

    Article  ADS  Google Scholar 

  16. M. Emprechtinger, D. C. Lis, R. Rolffs, P. Schilke, R. R. Monje, C. Comito, C. Ceccarelli, D. A. Neufeld, et al., Astrophys. J. 765, 61 (2013).

    Article  ADS  Google Scholar 

  17. A. Faure and E. Josselin, Astron. Astrophys. 492, 257 (2008).

    Article  ADS  Google Scholar 

  18. A. Faure, N. Crimier, C. Ceccarelli, P. Valiron, L. Wiesenfeld, and M. L. Dubernet, Astron. Astrophys. 472, 1029 (2007).

    Article  ADS  Google Scholar 

  19. D. R. Flower and G. Pineau des Forêts, Mon. Not. R. Astron. Soc. 406, 1745 (2010).

    ADS  Google Scholar 

  20. R. Genzel, M. J. Reid, J. M. Moran, and D. Downes, Astrophys. J. 244, 884 (1981).

    Article  ADS  Google Scholar 

  21. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, et al., J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022).

    Article  Google Scholar 

  22. M. D. Gray, A. Baudry, A. M. S. Richards, E. M. L. Humphreys, A. M. Sobolev, and J. A. Yates, Mon. Not. R. Astron. Soc. 456, 374 (2016).

    Article  ADS  Google Scholar 

  23. M. D. Gray, S. Etoka, A. M. S. Richards, and B. Pimpanuwat, Mon. Not. R. Astron. Soc. 513, 1354 (2022).

    Article  ADS  Google Scholar 

  24. S. Green, S. Maluendes, and A. D. McLean, Astrophys. J. Suppl. Ser. 85, 181 (1993).

    Article  ADS  Google Scholar 

  25. T. W. Hartquist, K. M. Menten, S. Lepp, and A. Dalgarno, Mon. Not. R. Astron. Soc. 272, 184 (1995).

    Article  ADS  Google Scholar 

  26. I. M. Hoffman, W. M. Goss, C. L. Brogan, and M. J. Claussen, Astrophys. J. 627, 803 (2005).

    Article  ADS  Google Scholar 

  27. D. Hollenbach, M. Elitzur, and C. F. McKee, Astrophys. J. 773, 70 (2013).

    Article  ADS  Google Scholar 

  28. D. G. Hummer and G. B. Rybicki, Astrophys. J. 293, 258 (1985).

    Article  ADS  Google Scholar 

  29. M. J. Kaufman and D. A. Neufeld, Astrophys. J. 456, 250 (1996a).

    Article  ADS  Google Scholar 

  30. M. J. Kaufman and D. A. Neufeld, Astrophys. J. 456, 611 (1996b).

    Article  ADS  Google Scholar 

  31. T. A. van Kempen, D. Wilner, and M. Gurwell, Astrophys. J. 706, L22 (2009).

    Article  ADS  Google Scholar 

  32. S. König, S. Martín, S. Muller, J. Cernicharo, K. Sakamoto, L. K. Zschaechner, E. M. L. Humphreys, T. Mroczkowski, et al., Astron. Astrophys. 602, A42 (2017).

    Article  Google Scholar 

  33. C.-Y. Kuo, S. H. Suyu, V. Impellizzeri, and J. A. Braatz, Publ. Astron. Soc. Jpn. 71, 57 (2019).

    Article  ADS  Google Scholar 

  34. S. Leurini, K. M. Menten, and C. M. Walmsley, Astron. Astrophys. 592, A31 (2016).

    Article  ADS  Google Scholar 

  35. B. C. McEwen, Y. M. Pihlström, and L. O. Sjouwerman, Astrophys. J. 793, 133 (2014).

    Article  ADS  Google Scholar 

  36. B. C. McEwen, Y. M. Pihlström, and L. O. Sjouwerman, Astrophys. J. 826, 189 (2016).

    Article  ADS  Google Scholar 

  37. L. Moscadelli, L. Testi, R. S. Furuya, C. Goddi, M. Claussen, Y. Kitamura, and A. Wootten, Astron. Astrophys. 446, 985 (2006).

    Article  ADS  Google Scholar 

  38. A. V. Nesterenok, Astron. Lett. 39, 717 (2013).

    Article  ADS  Google Scholar 

  39. A. V. Nesterenok, Mon. Not. R. Astron. Soc. 455, 3978 (2016).

    Article  ADS  Google Scholar 

  40. A. V. Nesterenok, Astrophys. Space Sci. 363, 151 (2018).

    Article  ADS  Google Scholar 

  41. A. V. Nesterenok, Astron. Lett. 46, 449 (2020).

    Article  ADS  Google Scholar 

  42. A. V. Nesterenok, J. Phys.: Conf. Ser. 2103, 012012 (2021).

    Google Scholar 

  43. A. V. Nesterenok, Mon. Not. R. Astron. Soc. 509, 4555 (2022).

    Article  ADS  Google Scholar 

  44. A. V. Nesterenok and D. A. Varshalovich, Astron. Lett. 37, 456 (2011).

    Article  ADS  Google Scholar 

  45. A. V. Nesterenok, D. Bossion, Y. Scribano, and F. Lique, Mon. Not. R. Astron. Soc. 489, 4520 (2019).

    Article  ADS  Google Scholar 

  46. D. A. Neufeld and G. J. Melnick, Astrophys. J. 368, 215 (1991).

    Article  ADS  Google Scholar 

  47. D. A. Neufeld, G. J. Melnick, M. J. Kaufman, H. Wiesemeyer, R. Güsten, A. Kraus, K. M. Menten, O. Ricken, et al., Astrophys. J. 843, 94 (2017).

    Article  ADS  Google Scholar 

  48. G. N. Ortiz-León, S. A. Dzib, M. A. Kounkel, L. Loinard, A. J. Mioduszewski, L. F. Rodríguez, R. M. Torres, G. Pech, et al., Astrophys. J. 834, 143 (2017).

    Article  ADS  Google Scholar 

  49. M. Pereira-Santaella, E. González-Alfonso, A. Usero, S. García-Burillo, J. Martín-Pintado, L. Colina, A. Alonso-Herrero, S. Arribas, et al., Astron. Astrophys. 601, L3 (2017).

    Article  ADS  Google Scholar 

  50. Y. M. Pihlström, L. O. Sjouwerman, D. A. Frail, M. J. Claussen, R. A. Mesler, and B. C. McEwen, Astron. J. 147, 73 (2014).

    Article  ADS  Google Scholar 

  51. L. F. Rodríguez, G. Anglada, J. M. Torrelles, J. E. Mendoza-Torres, A. D. Haschick, and P. T. P. Ho, Astron. Astrophys. 389, 572 (2002).

    Article  ADS  Google Scholar 

  52. S. V. Salii, A. M. Sobolev, and N. D. Kalinina, Astron. Rep. 46, 955 (2002).

    Article  ADS  Google Scholar 

  53. C. N. Shingledecker, J. B. Bergner, R. Le Gal, K. I. Öberg, U. Hincelin, and E. Herbst, Astrophys. J. 830, 151 (2016).

    Article  ADS  Google Scholar 

  54. V. S. Strelnitskii, Sov. Phys. Usp. 17, 507 (1975)].

    Article  ADS  Google Scholar 

  55. D. A. Varshalovich, A. V. Ivanchik, and N. S. Babkovskaya, Astron. Lett. 32, 29 (2006).

    Article  ADS  Google Scholar 

  56. M. A. Voronkov, J. L. Caswell, S. P. Ellingsen, J. A. Green, and S. L. Breen, Mon. Not. R. Astron. Soc. 439, 2584 (2014).

    Article  ADS  Google Scholar 

  57. N. Watanabe and A. Kouchi, Astrophys. J. 571, L173 (2002).

    Article  ADS  Google Scholar 

  58. J. M. Woodall and M. D. Gray, Mon. Not. R. Astron. Soc. 378, L20 (2007).

    Article  ADS  Google Scholar 

  59. C. Yang, E. González-Alfonso, A. Omont, M. Pereira-Santaella, J. Fischer, A. Beelen, and R. Gavazzi, Astron. Astrophys. 634, L3 (2020).

    Article  ADS  Google Scholar 

  60. J. A. Yates, D. Field, and M. D. Gray, Mon. Not. R. Astron. Soc. 285, 303 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nesterenok.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenok, A.V. Collisional Pumping of H\({}_{2}\)O and СH\({}_{3}\)OH Masers in C-Type Shock Waves. Astron. Lett. 48, 345–359 (2022). https://doi.org/10.1134/S1063773722060044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722060044

Keywords:

Navigation