Skip to main content
Log in

Study of the Influence of an Evolving Galactic Potential on the Orbital Properties of 152 Globular Clusters with Data from the Gaia EDR3 Catalogue

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have studied the influence of an evolving gravitational potential of the Milky Way Galaxy on the orbital motion of 152 globular clusters with proper motions from the Gaia EDR3 catalogue and mean distances from Baumgardt and Vasiliev (2021). To construct a semicosmological evolving model potential with changing masses and sizes of the Galactic components, we have used the algorithm described in Haghi et al. (2015). The adopted axisymmetric three-component model potential of the Galaxy includes a spherical bulge, a flat Miyamoto–Nagai disk, and a spherical Navarro–Frenk–White dark matter halo. The orbits are integrated backward in time. We compare the orbital parameters of globular clusters derived in static and evolving potentials when integrating the orbits for 5 and 12 Gyr backward. For the first time we have studied the influence of separately a change in the masses and a change in the sizes of the Galactic components. The changes in the masses and sizes of the components are shown to act on the orbital parameters in the opposite way. At small Galactocentric distances this influence is maximally compensated for. The orbits of distant globular clusters and those with a large apocenter distance undergo the biggest changes. We show that on time scales up to \({-}5\) Gyr the orbits of globular clusters in the case of a potential with both changing masses and changing sizes of the components undergo, on average, minor changes compared to the case of a static potential. These changes fit into the limits of the statistical uncertainties caused by the errors in the data. So, on these time scales the Galactic potential may be deemed static. We provide tables with the orbital parameters of globular clusters derived in both static and evolving potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 10

Similar content being viewed by others

REFERENCES

  1. N. Aghanim, Y. Akrami, M. Ashdown, et al. (Planck Collab.), Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  2. C. Allen and A. Santillan, Rev. Mex. Astron. Astrofis. 22, 255 (1991).

    ADS  Google Scholar 

  3. B. M. Armstrong, K. Bekki, and A. D. Ludlow, Mon. Not. R. Astron. Soc. 500, 2937 (2021).

    Article  ADS  Google Scholar 

  4. J. A. Arnold, A. J. Romanowsky, J. P. Brodie, L. Chomiuk, L. R. Spitler, J. Strader, A. J. Benson, and D. A. Forbes, Astrophys. J. Lett. 736, L26 (2011).

    Article  ADS  Google Scholar 

  5. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 42, 567 (2016).

    Article  ADS  Google Scholar 

  6. A. T. Bajkova and V. V. Bobylev, Research Astron. Astrophys. 21, 173 (2021a).

    Article  ADS  Google Scholar 

  7. A. T. Bajkova and V. V. Bobylev, Astron. Rep. 65, 737 (2021b).

    Article  ADS  Google Scholar 

  8. A. T. Bajkova, G. Carraro, V. I. Korchagin, N. O. Budanova, and V. V. Bobylev, Astrophys. J. 895, 69 (2020).

    Article  ADS  Google Scholar 

  9. G. Battaglia, S. Taibi, G. F. Thomas, and T. K. Fritz, astro-ph/2106.08819 (2021).

  10. H. Baumgardt and E. Vasiliev, astro-ph/2105.09526 (2021).

  11. K. Bekki, M. A. Beasley, J. P. Brodie, and D. A. Forbes, Mon. Not. R. Astron. Soc. 363, 1211 (2005).

    Article  ADS  Google Scholar 

  12. M. Bellazzini, Mon. Not. R. Astron. Soc. 347, 119 (2004).

    Article  ADS  Google Scholar 

  13. P. Bhattacharjee, S. Chaudhury, and S. Kundu, Astrophys. J. 785, 63 (2014).

    Article  ADS  Google Scholar 

  14. J. Bland-Hawthorn and O. Gerhard, Ann. Rev. Astron. Astrophys. 54, 529 (2016).

    Article  ADS  Google Scholar 

  15. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 42, 1 (2016).

    Article  ADS  Google Scholar 

  16. J. S. Bullock and K. V. Johnston, Astrophys. J. 635, 931 (2005).

    Article  ADS  Google Scholar 

  17. C. A. Correa, J. S. B. Wyithe, J. Schaye, and A. R. Duffy, Mon. Not. R. Astron. Soc. 452, 1217 (2015).

    Article  ADS  Google Scholar 

  18. T. Garrow, J. J. Webb, and J. Bovy, Mon. Not. R. Astron. Soc. 499, 804 (2020).

    Article  ADS  Google Scholar 

  19. F. A. Gómez, A. Helmi, A. G. A. Brown, and Y.-S. Li, Mon. Not. R. Astron. Soc. 408, 935 (2010).

    Article  ADS  Google Scholar 

  20. H. Haghi, A. H. Zonoozi, and S. Taghavi, Mon. Not. R. Astron. Soc. 450, 2812 (2015).

    Article  ADS  Google Scholar 

  21. W. Harris, astro-ph/1012.3224 (2010).

  22. A. Helmi, F. van Leeuwen, P. J. McMillan, et al. (Gaia Collab.), Astron. Astrophys. 616, 12 (2018).

    Google Scholar 

  23. A. Irrgang, B. Wilcox, E. Tucker, and L. Schiefelbein, Astron. Astrophys. 549, 137 (2013).

    Article  ADS  Google Scholar 

  24. I. King, Astrophys. J. 67, 471 (1962).

    Google Scholar 

  25. H. H. Koppelman and A. Helmi, astro-ph/2006.16283 (2020).

  26. D. Massari, H. H. Koppelman, and A. Helmi, Astron. Astrophys. 630, L4 (2019).

    Article  ADS  Google Scholar 

  27. M. Miyamoto and R. Nagai, Publ. Astron. Soc. Jpn. 27, 533 (1975).

    ADS  Google Scholar 

  28. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    Article  ADS  Google Scholar 

  29. A. Perez-Villegas, B. Barbuy, L. O. Kerber, S. Ortolani, S. O. Souza, and E. Bica, Mon. Not. R. Astron. Soc. 491, 3251 (2020).

    ADS  Google Scholar 

  30. J. L. Sanders, E. J. Lilley, E. Vasiliev, N. W. Evans, and D. Erkal, Mon. Not. R. Astron. Soc. 499, 4793 (2020).

    Article  ADS  Google Scholar 

  31. R. Schönrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010).

    Article  ADS  Google Scholar 

  32. S. Trujillo-Gomez, J. M. D. Kruijssen, M. Reina-Campos, J. L. Pfeffer, B. W. Keller, R. A. Crain, N. Bastian, and M. E. Hughes, Mon. Not. R. Astron. Soc. 503, 31 (2021).

    Article  ADS  Google Scholar 

  33. E. Vasiliev, Mon. Not. R. Astron. Soc. 484, 2832 (2019).

    Article  ADS  Google Scholar 

  34. E. Vasiliev and H. Baumgardt, astro-ph/2102.09568 (2021).

  35. W. Wang, J. Han, M. Cautun, Z. Li, and M. Ishigaki, South Calif. Publ. Manag. Assoc. 63, 109801 (2020).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to the anonymous referees for their very interesting and useful remarks that allowed the paper to be improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Bajkova.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajkova, A.T., Smirnov, A.A. & Bobylev, V.V. Study of the Influence of an Evolving Galactic Potential on the Orbital Properties of 152 Globular Clusters with Data from the Gaia EDR3 Catalogue. Astron. Lett. 47, 454–473 (2021). https://doi.org/10.1134/S106377372107001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372107001X

Keywords:

Navigation