Skip to main content
Log in

Large-Scale Magnetic Field Fragmentation in Flux-Tubes Near the Base of the Solar Convection Zone

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Magnetic quenching of turbulent thermal diffusivity leads to instability of the large-scale field with the production of spatially isolated regions of enhanced field. This conclusion follows from a linear stability analysis in the framework of mean-field magnetohydrodynamics that allows for thermal diffusivity dependence on the magnetic field. The characteristic growth time of the instability is short compared to the 11-year period of solar activity. The characteristic scale of the increased field regions measures in tens of mega-meters. The instability can produce magnetic inhomogeneities whose buoyant rise to the solar surface forms the solar active regions. The magnetic energy of the field concentrations coincides in order of magnitude with the energy of the active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. J. Acheson and M. P. Gibbons, Phyl. Trans. Roy. Soc. London A289, 459 (1978).

    Google Scholar 

  2. H.W. Babcock, Astrophys. J. 133, 572 (1961).

    Article  ADS  Google Scholar 

  3. P. Caligari, F. Moreno-Insertis, and M. Schüssler, Astrophys. J. 441, 886 (1995).

    Article  ADS  Google Scholar 

  4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press, 1961).

    MATH  Google Scholar 

  5. A. R. Choudhuri, Nature’s Third Cycle (Oxford University Press, 2015).

    Book  Google Scholar 

  6. M. Dasi-Espuig, S. K. Solanki, N. A. Krivova, R. Cameron, and T. Pen˜ uela, Astron. Astrophys. 518, A7 (2010).

    Google Scholar 

  7. S. D’Silva and A. R. Choudhuri, Astron. Astrophys. 272, 621 (1993).

    ADS  Google Scholar 

  8. D. V. Erofeev, in Multi-Wavelength Investigation of Solar Activity, IAU Symp. 223, Ed. by A. V. Stepanov, E. E. Benevolenskaya, A. G. Kosovichev (Cambridge, UK: Cambridge Univ. Press, 2004), p. 97.

  9. P. A. Gilman, in Physics of the Sun, Ed. by P. A. Sturrock, Dordrecht, D. Reidel (Publishing Company, 1986), vol. 1, p. 95.

    Google Scholar 

  10. P. A. Gilman and G. A. Glatzmaier, Astrophys. J. Suppl. Ser. 45, 335 (1981).

    Article  ADS  Google Scholar 

  11. G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy, Astrophys. J. 49, 153 (1919).

    Article  ADS  Google Scholar 

  12. B. B. Karak, M. Rheinhardt, A. Brandenburg, P. J. Käpylä, and M. J. Käpylä, Astrophys. J. 795, 16 (2014).

    Article  ADS  Google Scholar 

  13. A. Khlystova and S. Toriumi, Astrophys. J. 839, 63 (2017).

    Article  ADS  Google Scholar 

  14. L. L. Kitchatinov and M. V. Mazur, Solar Phys. 191, 325 (2000).

    Article  ADS  Google Scholar 

  15. L. L. Kitchatinov and S. V. Olemskoi, Astron. Lett. 32, 320 (2006).

    Article  ADS  Google Scholar 

  16. L. L. Kitchatinov and S. V. Olemskoy, Astron. Lett. 37, 656 (2011).

    Article  ADS  Google Scholar 

  17. L. L. Kitchatinov, V. V. Pipin, and G. Rüdiger, Astron. Nachr. 315, 157 (1994).

    Article  ADS  Google Scholar 

  18. F. Krause and K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Berlin, Akademie-Verlag, 1980).

    MATH  Google Scholar 

  19. R. B. Leighton, Astrophys. J. 156, 1 (1969).

    Article  ADS  Google Scholar 

  20. B. W. Lites, A. Skumanich, and V. Martinez Pillet, Astron. Astrophys. 333, 1053 (1998).

    ADS  Google Scholar 

  21. M. A. Livshits, G. V. Rudenko, M. M. Katsova, and I. I. Myshyakov, Adv. Space Res. 55, 920 (2015).

    Article  ADS  Google Scholar 

  22. E. N. Parker, Cosmical Magnetic Fields (Oxford, Clarendon Press, 1979).

    Google Scholar 

  23. E. N. Parker, Astrophys. J. 283, 343 (1984).

    Article  ADS  Google Scholar 

  24. M. Stix, The Sun (Springer, Berlin, 1989).

    Book  MATH  Google Scholar 

  25. X. Sun, J. T. Hoeksema, Y. Liu, T. Wiegelmann, K. Hayashi, Q. Chen, and J. Thalmann, Astrophys. J. 748, 77 (2012).

    Article  ADS  Google Scholar 

  26. I.Tuominen, A. Brandenburg, D. Moss, and M. Rieutord, Astron. Astrophys. 284, 259 (1994).

    ADS  Google Scholar 

  27. M.A. Weber, Y. Fan, and M. S. Miesch, Astrophys. J. 741, 11 (2011).

    Article  ADS  Google Scholar 

  28. N. O. Weiss, Proc. Roy. Soc. London A 293, 310 (1966).

    Article  ADS  Google Scholar 

  29. T. A. Yousef, A. Brandenburg, and G. Rüdiger, Astron. Astrophys. 411, 321 (2003).

    Article  ADS  Google Scholar 

  30. Ya. B. Zel’dovich, Sov. Phys. JETP 4, 460 (1957).

    Google Scholar 

  31. C. Zwaan, in Sunspots: Theory and Observations, Ed. by J. H. Thomas, N. O.Weiss (Kluwer Academic Publishers, 1992), p. 75.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Kitchatinov.

Additional information

Russian Text © L.L. Kitchatinov, 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 1, pp. 45–54.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchatinov, L.L. Large-Scale Magnetic Field Fragmentation in Flux-Tubes Near the Base of the Solar Convection Zone. Astron. Lett. 45, 39–48 (2019). https://doi.org/10.1134/S1063773719010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773719010031

Keywords

Navigation