Skip to main content
Log in

Black Hole in a Radiation-Dominated Universe

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We study a black hole in an expanding Universe during the radiation-dominated stage. In particular, such a black hole may be of the primordial origin. In the case when the black hole radius is much smaller than the cosmological horizon, we found a self-consistent solution for the metric and the matter distribution and its velocity far from the black hole. At distances much smaller than the cosmological horizon our solution coincides with the previously obtained solution for quasi-stationary accretion. Our results can be applied, in particular, for the formation of dark matter density spikes around primordial black holes, and for the evolution of dark matter clumps during the radiation-dominated stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Babichev and G. Esposito-Farese, Phys. Rev. D 87, 044032 (2013).

    Article  ADS  Google Scholar 

  2. E. Babichev, V. Dokuchaev, and Yu. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004).

    Article  ADS  Google Scholar 

  3. E. Babichev, V. Dokuchaev, and Y. Eroshenko, Class. Quantum Grav. 29, 115002 (2012).

    Article  ADS  Google Scholar 

  4. E. O. Babichev, V. I. Dokuchaev, and Yu. N. Eroshenko, J. Exp. Theor. Phys. 100, 528 (2005).

    Article  ADS  Google Scholar 

  5. E. O. Babichev, V. I. Dokuchaev, and Yu. N. Eroshenko, Phys. Usp. 56, 1155 (2013).

    Article  ADS  Google Scholar 

  6. G. V. Bicknell and R. N. Henriksen, Astrophys. J. 232, 670 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. S. Bisnovatyi-Kogan, Astron. Rep. 59, 430 (2015).

    Article  ADS  Google Scholar 

  8. K. A. Bronnikov and S. G. Rubin, Lectures on Gravitation and Cosmology (MIFI, Moscow, 2008) [in Russian].

    Google Scholar 

  9. B. J. Carr, T. Harada, and H. Maeda, Class. Quantum Grav. 27, 183101 (2010).

    Article  ADS  Google Scholar 

  10. S. Chadburn and R. Gregory, Class. Quantum Grav. 31, 195006 (2014).

    Article  ADS  Google Scholar 

  11. Yu. N. Eroshenko, Astron. Lett. 42, 347 (2016).

    Article  ADS  Google Scholar 

  12. V. Faraoni and A. Jacques, Phys. Rev. D 76, 063510 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. Faraoni, M. Lapierre-Leonard, and A. Prain, J. Cosmol. Astropart. Phys. 10, 013 (2015).

    Article  ADS  Google Scholar 

  14. J. T. Firouzjaee and T. Feghhi, arXiv:1608. 05491 [grqc].

  15. V. Husain, E. A. Martinez, and D. Nunez, Phys. Rev. D 50, 3783 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Pergamon, Oxford, 1975; Fizmatlit, Moscow, 2006).

    Google Scholar 

  17. M. L. McClure and C. C. Dyer, Class. Quantum Grav. 23, 1971 (2006).

    Article  ADS  Google Scholar 

  18. G. C. McVittie, Mon. Not. R. Astron. Soc. 93, 325 (1933).

    Article  ADS  Google Scholar 

  19. F. C. Michel, Astrophys. Space Sci. 15, 153 (1972).

    Article  ADS  Google Scholar 

  20. I. Musco, J. C. Miller, and A. G. Polnarev, Class. Quantum Grav. 26, 235001 (2009).

    Article  ADS  Google Scholar 

  21. D. K. Nadezhin, I. D. Novikov, and A. G. Polnarev, Astron. Rep. 55, 216 (1978).

    Google Scholar 

  22. I. D. Novikov, A. G. Polnarev, A. A. Starobinskii, and Ya. B. Zeldovich, Astron. Astrophys. 80, 104 (1979).

    ADS  Google Scholar 

  23. A. G. Polnarev and I. Musco, Class. Quantum Grav. 24, 1405 (2007).

    Article  ADS  Google Scholar 

  24. A. G. Polnarev, T. Nakama, and J. Yokoyama, J. Cosmol. Astropart. Phys. 09, 027 (2012).

    Article  ADS  Google Scholar 

  25. K. P. Stanyukovich and O. Shershekeev, in Problems of the Theory of Gravitation and Elementary Particles, Collection ofArticles (Atomizdat, Moscow, 1966), p. 241 [in Russian].

    Google Scholar 

  26. J. Sultana and C. C. Dyer, Gen. Rel. Grav. 37, 1347 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Eroshenko.

Additional information

Original Russian Text © E.O. Babichev, V.I. Dokuchaev, Yu.N. Eroshenko, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, Nos. 8–9, pp. 537–545.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, E.O., Dokuchaev, V.I. & Eroshenko, Y.N. Black Hole in a Radiation-Dominated Universe. Astron. Lett. 44, 491–499 (2018). https://doi.org/10.1134/S1063773718090013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718090013

Keywords

Navigation