Skip to main content
Log in

Multigroup radiative transfer in supernova shock breakout models

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The physical peculiarities of supernova shock breakout are discussed. A number of models for various types of supernovae have been constructed based on multigroup radiative transfer by taking these peculiarities into account. The results of numerical simulations and the influence of the effects of photon scattering by electrons and the thermalization depth on them are considered. It is shown under which conditions the appearance of hard X-ray emission is possible at shock breakout. It is pointed out what refinements are necessary in the computational algorithms for radiative transfer and hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Band, J. E. Grindlay, J. Hong, et al., Astrophys. J. 673, 1225 (2008).

    Article  ADS  Google Scholar 

  2. F. A. Baum, S. A. Kaplan, and K. P. Stanyukovich, Introduction to Space Gasdynamics (Fizmatgiz, Moscow, 1958) [in Russian].

    Google Scholar 

  3. P. A. Becker, Astrophys. J. 327, 772 (1988).

    Article  ADS  Google Scholar 

  4. S. Z. Belen’kii, Report (1950); B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, (Academic, New York, 1966) Vol. 1, p. 420.

  5. V. A. Belokon’, Zh. Eksp. Teor. Fiz. 36, 341 (1959) [Sov. Phys. JETP 9, 236 (1959)].

    Google Scholar 

  6. G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadyozhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 23 (1975).

    Article  ADS  Google Scholar 

  7. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 194, 1033 (1981a).

    ADS  MATH  Google Scholar 

  8. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 194, 1041 (1981b).

    ADS  MATH  Google Scholar 

  9. S. I. Blinnikov, Supernova Explosions: Their Causes and Consequences, Inst. Theor. Phys. Santa Barbara, August 5–9 (1997); http://online.kitp.ucsb.edu/online/supernova/snovaetrans.html.

  10. S. I. Blinnikov, Pis’ma Astron. Zh. 25, 424 (1999) [Astron. Lett. 25, 359 (1999)].

    Google Scholar 

  11. S. I. Blinnikov, R. Eastman, O. S. Bartunov, et al., Astrophys. J. 496, 454 (1998).

    Article  ADS  Google Scholar 

  12. S. I. Blinnikov, P. Lundqvist, O. Bartunov, et al., Astrophys. J. 532, 1132 (2000).

    Article  ADS  Google Scholar 

  13. S. I. Blinnikov, N. N. Chugai, P. Jundqvist, et al., in From Twilight to Highlight: The Physics of Supernovae, Ed. by W. Hillebrandt and B. Leibundgut (2003), p. 23; arXiv:astro-ph/0212569.

  14. S. I. Blinnikov, F. K. Röpke, E. I. Sorokina, et al., Astron. Astrophys. 453, 229, 2006.

    Article  ADS  Google Scholar 

  15. A. J. Calzavara and C. D. Matzner, Mon. Not. R. Astron. Soc. 351, 694 (2004).

    Article  ADS  Google Scholar 

  16. R. Chevalier, Fundament. Cosmic Phys. 7, 1 (1981).

    ADS  Google Scholar 

  17. N. N. Chugai, S. I. Blinnikov, and P. Lundqvist, Mem. Soc. Astron. Ital. 71, 383 (2000).

    ADS  Google Scholar 

  18. S. A. Colgate, C. R. McKee, and B. Blevins, Astrophys. J. 173, L87 (1972).

    Article  ADS  Google Scholar 

  19. S. A. Colgate, Astrophys. J. 187, 333 (1974).

    Article  ADS  Google Scholar 

  20. C. F. McKee and S. A. Colgate, Astrophys. J. 181, 903 (1973).

    Article  ADS  Google Scholar 

  21. E. Dwek and R. G. Arendt, Astrophys. J. 685, 976 (2008).

    Article  ADS  Google Scholar 

  22. L. Ensman and A. Burrows, Astrophys. J. 393, 742 (1992).

    Article  ADS  Google Scholar 

  23. Yu. A. Fadeyev and D. Gillet, Astron. Astroph. 333, 687 (1998).

    ADS  Google Scholar 

  24. Yu. A. Fadeyev, H. Le Coroller, and D. Gillet, Astron. Astrophys. 392, 735 (2002).

    Article  ADS  Google Scholar 

  25. G. M. Gandel’man and D. A. Frank-Kamenetskii, Dokl. Akad. Nauk SSSR 107, 811 (1956).

    MathSciNet  MATH  Google Scholar 

  26. S. Gezari, L. Dessart, S. Basa, et al., Astrophys. J. 683, L131 (2008).

    Article  ADS  Google Scholar 

  27. E. K. Grasberg, Astron. Zh. 58, 155 (1981) [Sov. Astron. 25, 85 (1981)].

    ADS  Google Scholar 

  28. E. K. Grasberg, Pis’ma Astron. Zh. 26, 676 (2000) [Astron. Lett. 26, 582 (2000)].

    Google Scholar 

  29. E. K. Grasberg and D. K. Nadyozhin, Baltic Astron. 13, 51 (2004).

    ADS  Google Scholar 

  30. J.E. Grindlay, W.W. Craig, N.A. Gehrels, et al., Proc. SPIE 4851, 331 (2003).

    Article  ADS  Google Scholar 

  31. B. C. Imshennik, Zh. Eksp. Teor. Fiz. 42, 236 (1962).

    Google Scholar 

  32. B. C. Imshennik, Fiz. Plazmy 1, 202 (1975).

    Google Scholar 

  33. V. S. Imshennik and Yu. I. Morozov, Zh. Prikl. Mekh. Tekh. Fiz. 2, 8 (1964).

    Google Scholar 

  34. V. S. Imshennik and D. K. Nadyozhin, Usp. Fiz. Nauk 156, 561 (1988).

    Article  Google Scholar 

  35. V. S. Imshennik and D. K. Nadyozhin, Sov. Sci. Rev., Sect. E 8, 1 (1989).

    Google Scholar 

  36. M. H. Johnson and C. F. McKee, Phys. Rev. D 3, 858 (1971).

    Article  ADS  Google Scholar 

  37. S. A. Kaplan and I. A. Klimishin, Astron. Zh. 36, 410 (1959) [Sov. Astron. 3, 404 (1959)].

    ADS  Google Scholar 

  38. S. A. Kaplan and I. A. Klimishin, Astron. Zh. 37, 281 (1960).

    ADS  Google Scholar 

  39. S. A. Kaplan and I. A. Klimishin, Astron. Zh. 41, 657 (1964) [Sov. Astron. 8, 524 (1964)].

    ADS  Google Scholar 

  40. D. R. C. Kelly and P. Korevaar, Astron. Astrophys. 296, 418 (1995).

    ADS  Google Scholar 

  41. R. I. Klein and R. A. Chevalier, Astrophys. J. 223, L109 (1978).

    Article  ADS  Google Scholar 

  42. R. I. Klein, R. A. Chevalier, P. Charles, and S. Bowyer, Astrophys. J. 234, 566 (1979).

    Article  ADS  Google Scholar 

  43. I. A. Klimishin, Astron. Zh. 39, 887 (1962a) [Sov. Astron. 35, 692 (1981)].

    ADS  Google Scholar 

  44. I. A. Klimishin, Astron. Zh. 39, 1006 (1962b) [Sov. Astron. 3, 782 (1959)].

    ADS  Google Scholar 

  45. I. A. Klimishin, Astrofizika 4, 257 4, 94 (1968).

    Google Scholar 

  46. I. A. Klimishin, Shock Waves in the Star Envelopes (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  47. T. Kogure and T. Osaki, Publ. Astron. Soc. Jpn. 13, 250 (1961).

    ADS  Google Scholar 

  48. J. Kubikowski, Ann. d’Astrophys. 22, 741 (1959).

    ADS  Google Scholar 

  49. A. P. Lightman, Astrophys. J. 244, 392 (1981).

    Article  ADS  Google Scholar 

  50. Yu. E. Lyubarskii and R.A. Syunyaev, Pis’maAstron. Zh. 8, 612 (1982) [Sov. Astron. Lett. 8, 330 (1982)].

    ADS  Google Scholar 

  51. F. Mandl and T. H. R. Skyrme, Proc. R. Soc. London A 215, 497 (1952).

    Article  ADS  MATH  Google Scholar 

  52. R. E. Marshak, Phys. Fluids 1, 24 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. M. Matsuoka, N. Kawai, T. Mihara, et al., Proc. SPIE 3114, 414 (1997).

    Article  ADS  Google Scholar 

  54. C. D. Matzner and C. F. McKee, Astrophys. J. 510, 379 (1999).

    Article  ADS  Google Scholar 

  55. D. Mihalas, Astrophys. J. 237, 574 (1980).

    Article  ADS  Google Scholar 

  56. D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford Univ., New York, 1984).

    MATH  Google Scholar 

  57. Yu. I. Morozov, Preprint ITEF-176 (Moscow, 1983).

  58. Yu. I. Morozov, Pis’ma Astron. Zh. 13, 345 (1987) [Sov. Astron. Lett. 13, 141 (1987)].

    ADS  Google Scholar 

  59. D. K. Nadyozhin and D. A. Frank-Kamenetskii, Astron. Zh. 41, 842 (1964) [Sov. Astron. 8, 674 (1964)].

    ADS  Google Scholar 

  60. D. I. Nagirner and Yu. I. Poutanen, Pis’ma Astron. Zh. 19, 651 (1993) [Astron. Lett. 19, 262 (1993)].

    ADS  Google Scholar 

  61. S. Narita, Progr. Theor. Phys. 49, 1911 (1973).

    Article  ADS  Google Scholar 

  62. N. Ohyama, Progr. Theor. Phys. 30, 170 (1963).

    Article  ADS  Google Scholar 

  63. Yu. P. Raizer, Zh. Eksp. Teor. Fiz. 32, 1528 (1957) [Sov. Phys. JETP 5, 1242 (1957)].

    Google Scholar 

  64. Yu. P. Raizer, Zh. Eksp. Teor. Fiz. 36, 1583 (1959a) [Sov. Phys. JETP 15, 1124 (1962)].

    Google Scholar 

  65. Yu. P. Raizer, Zh. Eksp. Teor. Fiz. 37, 1079 (1959b) [Sov. Phys. JETP 15, 769 (1962)].

    Google Scholar 

  66. H. Riffert, Astrophys. J. 327, 760 (1988).

    Article  ADS  Google Scholar 

  67. P. L. Sachdev, Publ. Astron. Soc. Jpn. 20, 264 (1968).

    ADS  Google Scholar 

  68. R. G. Sachs, Phys. Rev. 69, 514 (1946).

    Article  ADS  Google Scholar 

  69. A. Sakurai, Commun. Pure Appl. Math. 13, 353 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  70. K. Schawinski, S. Justham, C. Wolf, et al., Science 321, 223 (2008).

    Article  ADS  Google Scholar 

  71. H. K. Sen and A. W. Guess, Phys. Rev. 108, 560 (1957).

    Article  ADS  MATH  Google Scholar 

  72. T. Shigeyama, K. Nomoto, M. Hashimoto, and D. Sugimoto, et al., Nature 328, 320 (1987).

    Article  ADS  Google Scholar 

  73. T. Shigeyama and K. Nomoto, Astrophys. J. 360, 242 (1990).

    Article  ADS  Google Scholar 

  74. A G. Tolstov, Astron. Lett. 36, 109 (2010).

    Article  ADS  Google Scholar 

  75. A. M. Soderberg, E. Berger, K. L. Page, et al., Nature 453, 469 (2008).

    Article  ADS  Google Scholar 

  76. Ya. A. Urzhumov, Gravit. Cosmol. 8, 222 (2002); arXiv:astro-ph/0101098.

    MathSciNet  ADS  MATH  Google Scholar 

  77. E. Vitense, Zs. Astrophys. 28, 81 (1951).

    ADS  Google Scholar 

  78. T. A. Weaver, Astrophys. J. Suppl. Ser. 32, 233 (1976).

    Article  ADS  Google Scholar 

  79. T. A. Weaver and G. F. Chapline, Astrophys. J. 192, L57 (1974).

    Article  ADS  Google Scholar 

  80. S. E. Woosley, N. Langer, and T. A. Weaver, Astrophys. J. 448, 315 (1995).

    Article  ADS  Google Scholar 

  81. Ya. B. Zeldovich, Zh.Eksp.Teor.Fiz. 32, 1126 (1957) [Sov. Phys. JETP 5, 919 (1957)].

    Google Scholar 

  82. Ya. B. Zeldovich, Usp. Fiz. Nauk 115, 161 (1975) [Sov. Phys. Usp. 18, 79 (1975)].

    Article  Google Scholar 

  83. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic Press, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Blinnikov.

Additional information

Original Russian Text © S.I. Blinnikov, A.G. Tolstov, 2011, published in Pis’ma v Astronomicheskiℝ Zhurnal, 2011, Vol. 37, No. 3, pp. 217–232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinnikov, S.I., Tolstov, A.G. Multigroup radiative transfer in supernova shock breakout models. Astron. Lett. 37, 194–209 (2011). https://doi.org/10.1134/S1063773711010051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711010051

Keywords

Navigation