Skip to main content
Log in

Laser-Induced Dissociation of the Monolayer of Adsorbed Methanol Molecules

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

Astronomical observations indicate a high abundance of methanol molecules in the gas phase of molecular-cloud dense cores, which cannot be explained by gas-phase chemical reactions only. A significant contribution to the methanol abundance should be provided by chemical reactions on the dust particle surface with subsequent desorption of the produced molecules into the gas phase. For the development and refinement of models involving these processes, laboratory studies of photo-induced processes occurring in the adsorbed material are necessary. In this paper, the experiment results of adsorbed methanol molecules are presented. A methanol molecule monolayer, physically adsorbed on fused silica surface cooled by liquid nitrogen (Т ∼ 100 K), was irradiated in high vacuum by nanosecond pulses of an excimer KrF laser with a fixed wavelength λ = 248 nm. The photodissociation products of three-photon laser excitation were recorded by a quadrupole mass spectrometer. Relative yields of photofragments H, OH, and CH3 were determined. Photolysis of partially deuterated CH3OH molecules has shown that hydrogen atoms can be ejected both from hydroxyl and methyl groups. In contrast to the isolated molecule photolysis in the gas phase and dissociation of the multilayer molecular coatings, photoexcitation of adsorbed methanol monolayer even in the energy region of 10 eV does not cause noticeable chemical transformations and does not lead to the formation of molecular components H2 and CH4. Due to existing astrochemical modeling problems, possible application methods of the obtained laboratory results are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. Herbst and E. F. van Dishoeck, Ann. Rev. Astron. Astrophys. 47, 427 (2009).

    Article  ADS  Google Scholar 

  2. M. S. Murga, V. N. Varakin, A. I. Vasyunin, A. V. Stolyarov, and D. S. Wiebe, Russ. Chem. Rev. 89 (4) (2020, in press). https://doi.org/10.1070/RCR4912

  3. K. I. Öberg, Chem. Rev. 116, 9631 (2016).

    Article  Google Scholar 

  4. G. E. Hassel, E. Herbst, and R. Garrod, Astrophys. J. 681, 1385 (2008).

    Article  ADS  Google Scholar 

  5. Y. Wen, J. Segall, M. Dulligan, and C. Wittig, J. Chem. Phys. 101, 5665 (1994).

    Article  ADS  Google Scholar 

  6. B.-M. Cheng, M. Bahou, W.-C. Chen, C.-H. Yui, Y.‑P. Lee, and L. C. Lee, J. Chem. Phys. 117, 1633 (2002).

    Article  ADS  Google Scholar 

  7. S. Harich, J. J. Lin, Y. T. Lee, and X. Yang, J. Phys. Chem. A 103, 10324 (1999).

    Article  Google Scholar 

  8. S.-H. Lee, H.-I. Lee, and Y. T. Lee, J. Chem. Phys. 121, 932 (2004).

    Google Scholar 

  9. M. Lucas, Y. Liu, R. Bryant, and J. Zhang, Chem. Phys. Lett. 619, 18 (2015).

    Article  ADS  Google Scholar 

  10. T. Hama, M. Yokoyama, A. Yabushita, and M. Kawasaki, J. Chem. Phys. 130, 164505 (2009).

    Article  ADS  Google Scholar 

  11. G. A. Cruz-Diaz, R. Martín-Doménech, G. M. Muñoz Caro, and Y.-J. Chen, Astron. Astrophys. 592, A68 (2016).

    Article  ADS  Google Scholar 

  12. M. Kayanuma, M. Shoji, K. Furuya, Y. Aikawa, M. Ume-mura, and Y. Shigeta, Chem. Phys. Lett. 714, 137 (2019).

    Article  ADS  Google Scholar 

  13. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC, Boca Raton, 2007).

    Book  Google Scholar 

  14. V. N. Varakin, Chem. Phys. Lett. 714, 114 (2019).

    Article  ADS  Google Scholar 

  15. W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. 104, 2956 (1996).

    Article  ADS  Google Scholar 

  16. V. Tarnovsky, H. Deutsch, and K. Becker, J. Chem. Phys. 109, 932 (1998).

    Article  ADS  Google Scholar 

  17. P. A. Gerakines, W. A. Schutte, and P. Ehrenfreund, Astron. Astrophys. 312, 289 (1996).

    ADS  Google Scholar 

  18. K. I. Oberg, R. T. Garrod, E. F. van Dishoeck, and H. Linnartz, Astron. Astrophys. 504, 891 (2009).

    Article  ADS  Google Scholar 

  19. A. Potapov, C. Jaeger, Th. Henning, M. Jonusas, and L. Krim, Astrophys. J. 846, 131 (2017).

    Article  ADS  Google Scholar 

  20. M. S. Murga, V. N. Varakin, A. V. Stolyarov, and D. S. Wiebe, Astron. Rep. 63, 633 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Varakin.

Ethics declarations

This study was supported by Russian Science Foundation (grant No. 18-13-00269).

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varakin, V.N., Murga, M.S. Laser-Induced Dissociation of the Monolayer of Adsorbed Methanol Molecules. Astron. Rep. 64, 319–325 (2020). https://doi.org/10.1134/S106377292004006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292004006X

Navigation