Skip to main content
Log in

An Unusually Powerful Water-Maser Flare in the Galactic Source W49N

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The most powerful flare ever registered in the Galactic water-maser source W49N has been detected in long-term monitoring data in the 616–523 transition with line frequency f = 22.235 GHz carried out on the 22-m Simeiz, 32-m Toruń, 100-m Effelsberg, and 32-m Medicina radio telescopes, beginning in September 2017 and continuing in 2018. Some stages of the flare were monitored daily. Detailed variations of the source spectral flux density with time have been obtained. At the flare maximum, the flux exceeded P ≈ 8 × 104 Jy, and this was record highest flux registered over the entire history of observations of this source. Important conclusions related to details of the mechanism for the H2O line emission have been drawn. An exponential increase in the flare flux density was detected during both the rise and decline of the flare. The data obtained indicate that the maser is unsaturated, and remained in this state up to the maximum observed flux densities. Additional support for the idea that the maser is unsaturated is the shape of the dependence of the line width on the flux. The characteristics of the variations of the spectral flux density are probably associated with a sharp increase in the density of the medium and the photon flux that led to an increase in the temperature from an initial level of 10–40 K to hundreds of Kelvins. Interferometric maps of the object during the increase in the spectral flux density of the flare have been obtained. A possible mechanism for the primary energy release in W49N is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Knowles, C. H. Mayer, A. C. Cheung, D. M. Rank, and C. H. Townes, Science 163, 1055 (1969).

    Article  ADS  Google Scholar 

  2. A. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, and W. J. Welch, Nature 221, 626 (1969).

    Article  ADS  Google Scholar 

  3. F. Sato, F. Akabane, and F. J. Kerr, Austral. J. Phys. 20, 197 (1967).

    Article  ADS  Google Scholar 

  4. C. G. Wynn-Williams, Mon. Not. R. Astron. Soc. 151, 397 (1971).

    Article  ADS  Google Scholar 

  5. B. Zhang, M. J. Reid, K. M. Menten, et al., Astrophys. J. 775, 79 (2013).

    Article  ADS  Google Scholar 

  6. V. S. Strel’nitskii and R. A. Syunyaev, Sov. Astron. 16, 579 (1972).

    Google Scholar 

  7. R. B. Larson, Ann. Rev. Astron. Astrophys. 11, 219 (1973).

    Article  ADS  Google Scholar 

  8. J. Silk and J. R. Burke, Astrophys. J. 190, 11 (1974).

    Article  ADS  Google Scholar 

  9. W. T. Sullivan, Astrophys. J. Suppl. 25, 393 (1973).

    Article  ADS  Google Scholar 

  10. J. M. Moran, G. D. Papadopoulos, B. F. Burke, K. J. Lo, et al., Astrophys. J. 185, 535 (1973).

    Article  ADS  Google Scholar 

  11. S. N. Knowles, K. J. Johnston, J. M. Morgan, B. F. Burke, K. Y. Lo, and P. R. and G. D. Papadopoulos, Astron. J. 79, 925 (1974).

    Article  ADS  Google Scholar 

  12. S. H. Knowles, C. H. Mayer, W. T. Sullivan, and A. C. Cheung, Science 166, 221 (1969).

    Article  ADS  Google Scholar 

  13. R. H. Gammon, Astron. Astrophys. 50, 71 (1976).

    ADS  Google Scholar 

  14. M. Harwit, D. A. Neufeld, G. J. Melnik, and M. J. Kaufman, Astrophys. J. 497, 105 (1998).

    Article  ADS  Google Scholar 

  15. C. Ceccarelli, E. Caux, G. J. White, S. Molinari, et al., Astron. Astrophys. 331, 372 (1998).

    ADS  Google Scholar 

  16. B. Nisini, M. Benedettini, T. Giannini, E. Caux, et al., Astron. Astrophys. 350, 529 (1999).

    ADS  Google Scholar 

  17. W. D. Gwinn, B. E. Turner, W. M. Goss, and G. L. Blackman, Astrophys. J. 179, 789 (1973).

    Article  ADS  Google Scholar 

  18. N. S. Nesterov, A. E. Vol’vach, I. D. Strepka, V. M. Shul’ga, V. I. Lebed’, and A. M. Pilipenko, Radiofiz. Radioastron. 5, 320 (2000).

    Google Scholar 

  19. A. E. Vol’vach, L. N. Vol’vach, I. D. Strepka, A. V. Antyufeev, V. V. Myshenko, S. Yu. Zubrin, and V. M. Shul’ga, Izv. KrAO 104(6), 72 (2009).

    Google Scholar 

  20. A. Kraus, T. P. Krichbaum, R. Wegner, A. Witzel, et al., Astron. Astrophys. 401, 161 (2003).

    Article  ADS  Google Scholar 

  21. T. M. Heckman and W. T. Sullivan, Astrophys. Lett. 17, 105 (1976).

    ADS  Google Scholar 

  22. P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 179, 111 (1973).

    Article  ADS  Google Scholar 

  23. T. Omodaka, T. Maeda, M. Miyoshi, A. Okudaira, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).

    Article  ADS  Google Scholar 

  24. T. Shimoikura, H. Kobayashi, T. Omodaka, P. J. Diamond, L. I. Matveyenko, and K. Fujisawa, Astrophys. J. 634, 459 (2005).

    Article  ADS  Google Scholar 

  25. J. M. Bologna, K. J. Johnston, S. H. Knowles, S. A. Mango, and R. M. Sloanaker, Astrophys. J. 199, 86 (1975).

    Article  ADS  Google Scholar 

  26. R. C. Walker, K. J. Johnston, B. F. Burke, and J. H. Spencer, Astrophys. J. 211, 1135 (1977).

    Article  Google Scholar 

  27. R. Gensel, D. Downes, J. M. Morgan, K. J. Johnston, et al., Astron. Astrophys. 66, 13 (1978).

    ADS  Google Scholar 

  28. S. Yu. Parfenov and A. M. Sobolev, Mon. Not. R. Astron. Soc. 444, 620 (2014).

    Article  ADS  Google Scholar 

  29. K. Inayoshi, K. Sugiyama, and T. Hosokawa, Astrophys. J. 773, 70 (2013).

    Article  Google Scholar 

  30. L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, et al., Astron. Rep. 63, 49 (2019).

    Article  ADS  Google Scholar 

  31. R. Genzel, D. Downes, M. H. Schneps, M. J. Reid, et al., Astrophys. J. 247, 1039 (1981).

    Article  ADS  Google Scholar 

  32. M. Elitzur, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 346, 983 (1989).

    Article  ADS  Google Scholar 

  33. C. R. Gwinn, Astrophys. J. 393, 149 (1992).

    Article  ADS  Google Scholar 

  34. C. R. Gwinn, Astrophys. J. 429, 241 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Volvach.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 8, pp. 638–652.

Funding

This work was supported by the Polish National Science Center (grant 2016/21/B/ST9/01455) and partially supported by Program 12 of the Presidium of the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant 19-52-4014). The study is partially based on observations with the 100-m telescope of the Max Planck Institute for Radio Astronomy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volvach, L.N., Volvach, A.E., Larionov, M.G. et al. An Unusually Powerful Water-Maser Flare in the Galactic Source W49N. Astron. Rep. 63, 652–665 (2019). https://doi.org/10.1134/S1063772919080067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919080067

Navigation