Skip to main content
Log in

Dynamics of magnetic fields of active regions in pre-flare states and during solar flares

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Solar flares observed in the active regions NOAA 10656, NOAA 11429, and NOAA 10930 are analyzed. The magnetic fluxes were constant to within 2% during these flares, as well as the distribution of the magnetic fields in the active regions. The analysis supports earlier conclusions that large (class X) solar flares arise when the magnetic fluxes of the active regions exceed 1022 Mx. The observation of a high magnetic flux in an active region is not sufficient for the appearance of a large flare: complex ßγδ field structures must also be observed before flares. Such active regions can generate singular lines of the magnetic field in the corona, in whose vicinities current sheets form. Magnetic-field lines above simple dipolar active regions have arched forms; singular lines are absent and no current sheets are created. Dipolar-type active regions do not generate flares. Imbalances in the magnetic flux of an active region and the growth rate of the magnetic flux are not any indications of the imminent appearance of a flare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kliem, V. S. Titov, and T. Torok, Astron. Astrophys. 413, L23 (2004).

    Article  ADS  Google Scholar 

  2. K. Kusano, T. Yokoyama, T. Maeshiroi, and T. Sakurai, Adv. Space Res. 32, 1931 (2003).

    Article  ADS  Google Scholar 

  3. V. V. Zaitsev and A. V. Stepanov, Phys. Usp. 51, 1123 (2008).

    Article  ADS  Google Scholar 

  4. R. P. Lin, S. Krucker, G. J. Hurford, D. M. Smith, H. S. Hudson, G. D. Holman, R. A. Schwartz, B. R. Dennis, G. H. Share, R. J. Murphy, A. G. Emslie, C. Johns-Krull, and N. Vilmer, Astrophys. J. Lett. 595, L69 (2003).

    Article  ADS  Google Scholar 

  5. S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, Nature 371, 495 (1994).

    Article  ADS  Google Scholar 

  6. S. I. Syrovatskii, Sov. Phys. JETP 23, 754 (1966).

    ADS  Google Scholar 

  7. A. I. Podgorny and S. I. Syrovatskii, Sov. J. Plasma Phys. 7, 580 (1981).

    Google Scholar 

  8. K. V. Brushlinskii, A. M. Zaborov, and S. I. Syrovatskii, Sov. J. Plasma Phys. 6, 165 (1980).

    ADS  Google Scholar 

  9. A. I. Podgorny and I.M. Podgorny, Geomagn. Aeron. 52, 150 (2012).

    Article  ADS  Google Scholar 

  10. A. I. Podgorny, I.M. Podgorny, Geomagn. Aeron. 52, 162 (2012).

    Article  ADS  Google Scholar 

  11. A. I. Podgorny, I. M. Podgorny, Astron. Rep. 52, 666 (2008).

    Article  ADS  Google Scholar 

  12. A. I.Podgorny and I. M. Podgorny, SunGeosphere 8, 71 (2013).

    ADS  Google Scholar 

  13. I. A. Bilenko, A. I. Podgorny, and I. M. Podgorny, Solar Phys. 207, 323 (2002)

    Article  ADS  Google Scholar 

  14. V. Abramenko, Solar Phys. 228, 29 (2005).

    Article  ADS  Google Scholar 

  15. A. I. Podgorny, Solar Phys. 123, 285 (1989).

    Article  ADS  Google Scholar 

  16. I. M. Podgorny, Yu. V. Balabin, E. V. Vashenyu, and A. I. Podgorny, Astron. Rep. 54, 645 (2010).

    Article  ADS  Google Scholar 

  17. D. A. Falconer, R. L. Moor, and G. A. Gary, Astrophys. J. 644, 1258 (2006).

    Article  ADS  Google Scholar 

  18. K. D. Leka and G. Bames, Astrophys. J. 656, 1173 (2007).

    Article  ADS  Google Scholar 

  19. G. J. D. Petrie and J. J. Sudol, Astrophys. J. 724, 1218 (2010).

    Article  ADS  Google Scholar 

  20. G. J. D. Petrie, Astrophys. J. 759, 50 (2012).

    Article  ADS  Google Scholar 

  21. J. Wang, M. Zhao, and G. Zhou, Astrophys. J. 690, 862 (2009).

    Article  ADS  Google Scholar 

  22. Y. Jiang, R. Zheng, J. Yang, J. Hong, B. Yi, and D. Yang, Astrophys. J. 744, 50 (2012).

    Article  ADS  Google Scholar 

  23. K. Kusano, Adv. Space Res. 32, 1917 (2003).

    Article  ADS  Google Scholar 

  24. V. N. Ishkov, Astron. Astrophys. Trans. 20, 563 (2001).

    Article  ADS  Google Scholar 

  25. A. I. Podgorny and I. M. Podgorny, Astron. Rep. 55, 629 (2011).

    Article  ADS  Google Scholar 

  26. I. M. Podgorny and A. I. Podgorny, in Proc. 33rd Annual Seminar on Physics of Auroral Phenomena, (Polar Geophys. Inst., Kola Sci. Centre, Russ. Acad. Sci., Apatity, Russia, 2010), p. 87.

    Google Scholar 

  27. I. M. Podgorny and A. I. Podgorny, in Proc. 35th Annual Seminar on Physics of Auroral Phenomena, (Polar Geophys. Inst., Kola Sci. Centre, Russ. Acad. Sci., Apatity, Russia, 2012), p. 88.

    Google Scholar 

  28. I. M. Podgorny and A. I. Podgorny, J. Atmos. Solar-Terr. Phys. 92, 59 (2013).

    Article  ADS  Google Scholar 

  29. I. M. Podgorny and A. I. Podgorny, Astron. Tsirk., No. 1586 (2013).

  30. A. I. Podgorny, I.M. Podgorny, and N. S. Meshalkina, Geomagn. Aeron. 53, 690 (2013).

    Article  ADS  Google Scholar 

  31. MDI Daily Magnetic Field Synoptic Data. http:// soi.stanford.edu/magnetic/index5.html

  32. JSOC Data Explore Info and Export. http://jsoc. stanford.edu/ajax/lookdata.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Podgorny.

Additional information

Original Russian Text © A.I. Podgorny, I.M. Podgorny, N.S. Meshalkina, 2015, published in Astronomicheskii Zhurnal, 2015, Vol. 92, No. 8, pp. 669–680.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgorny, A.I., Podgorny, I.M. & Meshalkina, N.S. Dynamics of magnetic fields of active regions in pre-flare states and during solar flares. Astron. Rep. 59, 795–805 (2015). https://doi.org/10.1134/S1063772915080065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915080065

Keywords

Navigation