Skip to main content
Log in

Timescales for mechanisms for the dynamical evolution of open star clusters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have obtained the stellar velocity dispersion in three mutually perpendicular directions in the halos and cores of clusters as a function of time for several non-stationary open-cluster models. During the dynamical evolution of the open-cluster models, the velocity dispersions undergo oscillations that do not decay during 5–10 violent-relaxation timescales, τ vr . We estimated the time for synchronization of the rotation of the open-cluster models and their motion around the center of the Galaxy, t s , which, depending on the model parameters, is t s ≃ (5–27)τ vr . Synchronization mechanisms for the models are discussed. The disruption of the systems in the force field of the Galaxy is strongly affected by tidal friction. We have also estimated the time for the formation of a spherical stellar-velocity distribution in the cluster models, t σ ≃ (6 − 25)τ vr . The impact of instability in the stellar motions in a cluster on the formation of a spherical velocity distribution in the open-cluster models is discussed. We have noted a tendency for a weakening of the dependence of the coarse phase density of the cluster on small initial perturbations of the stellar phase coordinates in the model cluster cores for times about five times longer than the violent-relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Long and M. D. Weinberg, Bull. Am. Astron. Soc. 25, 1453 (1993).

    ADS  Google Scholar 

  2. M. D. Weinberg, in Proceedings of the 11th Santa Cruz Summer Workshop in Astronomy and Astrophysics, Ed. by G. H. Smith and J. P. Brodie (Astron. Soc. Pac., San Francisco, 1993), Astron. Soc. Pac. Conf. Ser. 48, 689 (1993).

    Google Scholar 

  3. M. Lecar, J. C. Wheeler, and C. F. McKee, Astrophys. J. 205, 556 (1976).

    Article  ADS  Google Scholar 

  4. P. Hut, Astron. Astrophys. 99, 126 (1981).

    MATH  ADS  Google Scholar 

  5. R. A. Mardling and S. J. Aarseth, Mon. Not. R. Astron. Soc. 321, 398 (2001).

    Article  ADS  Google Scholar 

  6. V. G. Surdin, The Fifth Force (Izd. MTsNMO, Moscow, 2002) [in Russian].

    Google Scholar 

  7. L. Allen, S. T. Megeath, et al., in Protostars and Planets V, Ed. by B. Reipurth, D. Jewitt, and K. Keil, No. 1286 (in press).

  8. A. D. Chernin and Yu. N. Efremov, Mon. Not. R. Astron. Soc. 275, 208 (1995).

    Google Scholar 

  9. Yu. A. Shchekinov and I. I. Zinchenko, Astron. Zh. 81, 694 (2004) [Astron. Rep. 48, 629 (2004)].

    Google Scholar 

  10. J. P. Phillips, Astron. Astrophys., Suppl. Ser. 134, 241 (1999).

    Article  ADS  Google Scholar 

  11. A. A. Goodman, P. J. Benson, et al., Astrophys. J. 406, 528 (1993).

    Article  ADS  Google Scholar 

  12. L. Pirogov, I. Zinchenko, et al., Astron. Astrophys. 405, 639 (2003).

    Article  ADS  Google Scholar 

  13. J. Ballesteros-Paredes, R. S. Klessen, et al., in Protostars and Planets V, Ed. by B. Reipurth, D. Jewitt, and K. Keil, No. 1286 (in press).

  14. V. M. Danilov and L. V. Dorogavtseva, Astron. Zh. 80, 526 (2003) [Astron. Rep. 47, 483 (2003)].

    Google Scholar 

  15. V. M. Danilov, Astron. Zh. 79, 986 (2002) [Astron. Rep. 46, 887 (2002)].

    Google Scholar 

  16. V. M. Danilov, Pis’ma Astron. Zh. 23, 365 (1997) [Astron. Lett. 23, 322 (1997)].

    Google Scholar 

  17. V. M. Danilov, A. F. Seleznev, Astron. Astrophys. Trans. 6, 85 (1994).

    Article  ADS  Google Scholar 

  18. S. Chandrasekhar, Principles of Stellar Dynamics (Yerkes Observatory, 1942).

  19. S. A. Kutuzov and L. P. Osipkov, Astron. Zh. 57, 28 (1980) [Sov. Astron. 24, 17 (1980)].

    MATH  ADS  MathSciNet  Google Scholar 

  20. V. M. Danilov, Astron. Zh. 74, 188 (1997) [Astron. Rep. 41, 163 (1997)].

    Google Scholar 

  21. I. R. King, Astrophys. J. 67, 471 (1962).

    ADS  Google Scholar 

  22. E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations, Vol. 1: Nonstiff Problems (Springer-Verlag, Berlin, 1987; Mir, Moscow, 1990).

    Google Scholar 

  23. L. Spitzer and T. X. Thuan, Astrophys. J. 175, 31 (1972).

    Article  ADS  Google Scholar 

  24. M. Henon, in Dynamical Structure and Evolution of Stellar Systems, Ed. by L. Martinet and M. Mayor (Geneva Obs., Geneva, 1973), p. 183.

    Google Scholar 

  25. V. M. Danilov and E. V. Leskov, Astron. Zh. 82, 219 (2005) [Astron. Rep. 49, 190 (2005)].

    Google Scholar 

  26. K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatgiz, Moscow, 1958; Pergamon, Oxford, 1965).

    Google Scholar 

  27. R. Wielen, Astrophys. Space Sci. 13, 300 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.M. Danilov, L.V. Dorogavtseva, 2008, published in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 6, pp. 524–536.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danilov, V.M., Dorogavtseva, L.V. Timescales for mechanisms for the dynamical evolution of open star clusters. Astron. Rep. 52, 467–478 (2008). https://doi.org/10.1134/S1063772908060048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772908060048

PACS numbers

Navigation