Skip to main content
Log in

Mode Coupling Due to a Local Inhomogeneity in a Shallow-Water Acoustic Waveguide in a Broad Frequency Band

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Analytically and by numerical simulation, we consider the effect of a local inhomogeneity on a broadband (50–250 Hz) sound field formed in a shallow-water (40 m) waveguide on a stationary track at a range of up to 5 km. Analytical estimates are obtained using mode coupling theory, and numerical simulation is carried out using the wide-angle parabolic equation. It is assumed that the sound source is a single omnidirectional emitter, and the receiving system is a vertical array spanning the entire waveguide over depth. As an inhomogeneity, a local change in thickness of the water layer or a internal wave soliton is chosen, the presence of which causes mode coupling. Analytical estimates and numerical simulation show that when there is a local inhomogeneity on the acoustic track, the frequency dependence of the mode amplitudes acquires a characteristic modulation, the period of which decreases in frequency domain with increasing of the distance from the sound source to the inhomogeneity. This effect can be used to determine the position of a local inhomogeneity on a stationary track.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Munk and C. Wunsch, Rev. Geophys. 21 (4), 777 (1983).

    Article  ADS  Google Scholar 

  2. E. Uzhansky, O. Gadol, G. Lang, B. Katsnelson, S. Copel, T. Kazaz, and Y. Makovsky, J. Mar. Sci. Eng. 9 (12), 1423 (2021).

    Article  Google Scholar 

  3. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics (Springer, New York, 2012).

    Book  Google Scholar 

  4. B. D. Dushaw, B. M. Howe, J. A. Mercer, R. C. Spindel, A. B. Baggeroer, D. Menemenlis, C. Wunsch, T. G. Birdsall, K. Metzger, C. Clark, J. A. Colosi, B. D. Comuelle, M. Dzieciuch, W. Munk, P. F. Worcester, D. Costa, and A. M. G. Forbes, IEEE J. Ocean. Eng. 24 (2), 202 (1999).

    Article  ADS  Google Scholar 

  5. P. N. Mikhalevsky and A. N. Gavrilov, Polar Res. 20 (2), 185 (2001).

    Article  Google Scholar 

  6. V. M. Kuz’kin, Y.-T. Lin, A. A. Lun’kov, J. F. Lynch, and V. G. Petnikov, Acoust. Phys. 57 (3), 381 (2011).

    Article  ADS  Google Scholar 

  7. V. A. Grigor’ev and V. M. Kuz’kin, Acoust. Phys. 41 (3), 359 (1995).

    ADS  Google Scholar 

  8. A. G. Nechaev and A. I. Khil’ko, Sov. Phys. Acoust. 34 (2), 167 (1988).

    Google Scholar 

  9. A. G. Nechaev and A. I. Khil’ko, Sov. Phys. Acoust. 34 (4), 399 (1988).

    Google Scholar 

  10. V. A. Grigor’ev and B. G. Katsnel’son, Acoust. Phys. 60 (3), 287 (2014).

    Article  ADS  Google Scholar 

  11. V. A. Grigor’ev, B. G. Katsnel’son, and J. F. Lynch, Acoust. Phys. 59 (4), 431 (2013).

    Article  ADS  Google Scholar 

  12. Y. Jiang, V. Grigorev, and B. Katsnelson, Proc. Meet. Acoust. 44, 1 (2021).

    Google Scholar 

  13. V. M. Kuz’kin, A. A. Lun’kov, and S. A. Pereselkov, Acoust. Phys. 58 (3), 312 (2012).

    Article  ADS  Google Scholar 

  14. M. D. Collins and E. K. Westwood, J. Acoust. Soc. Am. 89 (3), 1068 (1991).

    Article  ADS  Google Scholar 

  15. A. A. Lunkov and B. G. Katsnelson, J. Acoust. Soc. Am. 147 (5), EL428 (2020).

    Article  ADS  Google Scholar 

  16. J. Bonnel, A. Thode, D. Wright, and R. Chapman, J. Acoust. Soc. Am. 147 (3), 1897 (2020).

    Article  ADS  Google Scholar 

  17. A. A. Lunkov and M. A. Shermeneva, Acoust. Phys. 65 (5), 527 (2019).

    Article  ADS  Google Scholar 

  18. L. M. Brekhovskikh and O. A. Godin, Acoustics for Inhomogeneous Mediums, Vol. 2: Sound Fields in Layered and 3D-Inhomogeneous Mediums (Nauka, Moscow, 2009) [in Russian].

  19. Broad Band Sound Interference in the Ocean, Ed. by V. A. Zverev and E. F. Orlov (Instrum. Exp. Tech., Soviet Acad. Sci., Gorky, 1984) [in Russian].

  20. G. L. D’Spain and W. A. Kuperman, J. Acoust. Soc. Am. 106 (5), 2454 (1999).

    Article  ADS  Google Scholar 

  21. S. D. Chuprov, in Ocean Acoustics: The State of the Arts, Ed. by L. M. Brekhovskikh (Nauka, Moscow, 1982), p. 71 [in Russian].

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-72-10121, https://rscf.ru/project/22-72-10121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shermeneva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunkov, A.A., Shermeneva, M.A. Mode Coupling Due to a Local Inhomogeneity in a Shallow-Water Acoustic Waveguide in a Broad Frequency Band. Acoust. Phys. 68, 467–475 (2022). https://doi.org/10.1134/S1063771022050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022050062

Keywords:

Navigation