Skip to main content
Log in

On Diffraction of a Point Sound Source by an Infinite Wedge

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We consider a two-dimensional problem of diffraction of a harmonic sound wave emitted by a point sound source located near the sharp angle of an infinite wedge asymmetrically with respect to its faces. The boundary is considered as acoustically rigid. Using boundary integral equations for an asymmetric location of a source of sound, the problem is reduced to a system of two Fredholm integral equations of the second kind. The behavior of the solution by approaching the vicinity of the corner of the wedge is determined by the Meixner condition. The pressure value at the wedge end at the corner point is found in an explicit form. An asymptotic estimate of the behavior of the pressure function at infinity is performed. Discretization reduces the system of basic boundary integral equations to a system of linear algebraic equations. An “enhanced” discretization scheme with three intervals of different densities at each face is proposed. The pressure in a scattered field is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Skudrzyk, The Foundations of Acoustics (Springer, New York, 1971; Mir, Moscow, 1976), Vol. 2.

  2. A. Sommerfeld, Mathematical Theory of Diffraction (Birkhauser, Boston, 2004). https://doi.org/10.1007/978-0-8176-8196-8_2

    Book  MATH  Google Scholar 

  3. J. B. Keller, J. Opt. Soc. Am. 52, 116 (1962). https://doi.org/10.1364/JOSA.52.000116

    Article  ADS  Google Scholar 

  4. F. Hacivelioglu, L. Sevgi, and P. Ya. Ufimtsev, IEEE Antennas Propag. Mag. 55, 257 (2013). https://doi.org/10.1109/MAP.2013.6735531

    Article  ADS  Google Scholar 

  5. G. Apaydin and L. Sevgi, Appl. Comput. Electromagn. Soc. J. 30, 1053 (2015). https://doi.org/10.1109/TAP.2014.2323414

    Article  Google Scholar 

  6. B. Lu, M. Darmon, L. Fradkin, and C. Potel, Ultrasonics 65, 5 (2016). https://doi.org/10.1016/j.ultras.2015.10.009

    Article  Google Scholar 

  7. M. A. Nethercote, R. C. Assier, and I. D. Abrahams, Wave Motion 93, 102479 (2020). https://doi.org/10.1016/j.wavemoti.2019.102479

    Article  MathSciNet  Google Scholar 

  8. A. I. Korolkov, A. V. Shanin, and A. A. Belous, Acoust. Phys. 65 (4), 340 (2019). https://doi.org/10.1134/S1063771019040067

    Article  ADS  Google Scholar 

  9. A. G. Kyurkchan and S. A. Manenkov, Acoust. Phys. 64 (5), 527 (2018). https://doi.org/10.1134/S1063771018050056

    Article  ADS  Google Scholar 

  10. I. V. Andronov, Acoust. Phys. 63 (2), 133 (2017). https://doi.org/10.1134/S1063771017010018

    Article  ADS  Google Scholar 

  11. M. A. Sumbatyan, T. S. Martynova, and N. K. Musatova, Eng. Anal. Boundary Elements 125, 157 (2021). https://doi.org/10.1016/j.enganabound.2021.01.017

    Article  MathSciNet  Google Scholar 

  12. V. Dominguez, I. G. Graham, and V. P. Smyshlyaev, Numer. Math. 106, 471 (2007). https://doi.org/10.1007/s00211-007-0071-4

    Article  MathSciNet  Google Scholar 

  13. S. Arden, S. N. Chandler-Wilde, and S. A. Longdon, J. Comp. Appl. Math. 204, 334 (2007). https://doi.org/10.1016/j.cam.2006.03.028

    Article  ADS  Google Scholar 

  14. C. A. Brebbia, P. W. Partridge, and L. C. Wrobel, Dual Reciprocity Boundary Element Method (Mir, Moscow, 1987; Springer, Dordrecht, 1991).

  15. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramovitz and I. A. Stigun (Dover Publ., 1965; Nauka, Moscow, 1979).

  16. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

    MATH  Google Scholar 

  17. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, 1977; Mir, Moscow, 1989).

  18. M. Feischl, Th. Fuhrer, N. Heuer, M. Karkulik, and D. Praetorius, Arch. Comp. Meth. Eng. 22, 309 (2015). https://doi.org/10.1007/s11831-014-9114-z

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-29-06013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sumbatyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumbatyan, M.A., Martynova, T.S. & Musatova, N.K. On Diffraction of a Point Sound Source by an Infinite Wedge. Acoust. Phys. 68, 307–315 (2022). https://doi.org/10.1134/S1063771022030149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771022030149

Keywords:

Navigation