Skip to main content
Log in

On the Application of Asymptotic Formulae Based on the Modified Maslov Canonical Operator to the Modeling of Acoustic Pulses Propagation in Three-Dimensional Shallow-Water Waveguides

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

In this study a technique for the modeling of propagation of acoustic pulses in shallow-water waveguides with three-dimensional bottom inhomogeneities is described. The described approach is based on the ray theory of sound propagation and the method of modified Maslov canonical operator. Representation of acoustical field in terms of the canonical operator gives several important advantages in practical computations. In particular, it is possible to compute the time series of a pulse at a reception point located on the caustics of a family of rays. Besides, a significant part of calculations within the proposed approach can be performed analytically; therefore, overall computational costs are substantially reduced. As an example, sound propagation in a wedge-shaped waveguide representing a shelf area near the coast line is considered. The ray geometry in such a waveguide is discussed both in the isovelocity case and in the presence of the thermocline in the water column. For both cases, the time series of an acoustical pulse propagating along the track aligned along the isobaths (parallel to the apex edge of the wedge) is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2012).

    MATH  Google Scholar 

  2. Y. T. Lin, T. F. Duda, and A. E. Newhall, J. Comput. Acoust. 21 (1), 1250018 (2013).

    Article  MathSciNet  Google Scholar 

  3. F. Sturm, J. Acoust. Soc. Am. 139 (1), 263 (2016).

    Article  ADS  Google Scholar 

  4. P. S. Petrov and F. Sturm, J. Acoust. Soc. Am. 139 (3), 1343 (2016).

    Article  ADS  Google Scholar 

  5. M. Yu. Trofimov, Acoust. Phys. 45 (5), 575 (1999).

    ADS  Google Scholar 

  6. O. C. Rodriguez, F. Sturm, P. Petrov, and M. Porter, Proc. Meet. Acoust. 30 (1), 070004 (2017).

    Article  Google Scholar 

  7. R. de Moraes Calazan and O. C. Rodríguez, J. Acoust. Soc. Am. 143 (4), 2059 (2018).

    Article  ADS  Google Scholar 

  8. M. Y. Trofimov, A. D. Zakharenko, and S. B. Kozitskiy, Comput. Phys. Commun. 207, 179 (2016).

    Article  ADS  Google Scholar 

  9. V. V. Bezotvetnykh, A. V. Burenin, Yu. N. Morgunov, and Yu. A. Polovinka, Acoust. Phys. 55 (3), 376 (2009).

    Article  ADS  Google Scholar 

  10. Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, and E. A. Voitenko, Acoust. Phys. 62 (3), 350 (2016).

    Article  ADS  Google Scholar 

  11. V. A. Akulichev, V. V. Bezotvetnykh, Yu. N. Morgunov, and Yu. A. Polovinka, Dokl. Earth Sci. 432 (2), 775 (2010).

    Article  ADS  Google Scholar 

  12. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and B. Tirozzi, Russ. J. Math. Phys. 17 (1), 66 (2010).

    Article  Google Scholar 

  13. V. P. Maslov and M. V. Fedoryuk, Quasi-Classical Approximation for Quantum Mechanics Equations (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  14. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, Izv. Ross. Akad. Nauk, Ser. Mat. 81 (2), 53 (2017).

    Google Scholar 

  15. P. S. Petrov, S. A. Sergeev, and A. A. Tolchennikov, Russ. J. Math. Phys. 25 (1), 102 (2018).

    Article  MathSciNet  Google Scholar 

  16. S. Yu. Dobrokhotov, D. A. Minenkov, V. E. Nazaikinskii, and B. Tirozzi, Oper. Theory: Adv. Appl. 228, 95 (2013).

    Google Scholar 

  17. D. E. Weston, Proc. Phys. Soc. 78 (1), 46 (1961).

    Article  ADS  Google Scholar 

  18. C. H. Harrison, J. Acoust. Soc. Am. 65 (1), 56 (1979).

    Article  ADS  Google Scholar 

  19. A. N. Rutenko, D. I. Borovoi, V. A. Gritsenko, P. S. Petrov, V. G. Ushchipovskii, and M. Boekholt, Acoust. Phys. 58 (3), 326 (2012).

    Article  ADS  Google Scholar 

  20. Jun Tang, P. S. Petrov, Shengchun Piao, and S. B. Kozitskiy, Acoust. Phys. 64 (2), 225 (2018).

    Article  ADS  Google Scholar 

  21. B. G. Katsnel’son and A. Yu. Malykhin, Acoust. Phys. 58 (3), 301 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewer for valuable comments.

Funding

The study was supported by the Russian Foundation for Basic Research (project nos. 18-31-00148 mol_a, 18-05-00057_a and 18-35-20081 mol_a_ved) and the RF President’s Program in Support of Leading Scientific Schools (grant NSh-6399.2018.1, agreement no. 075-02- 2018-867).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. S. Petrov, S. A. Sergeev or A. A. Tolchennikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, P.S., Sergeev, S.A. & Tolchennikov, A.A. On the Application of Asymptotic Formulae Based on the Modified Maslov Canonical Operator to the Modeling of Acoustic Pulses Propagation in Three-Dimensional Shallow-Water Waveguides. Acoust. Phys. 65, 716–723 (2019). https://doi.org/10.1134/S1063771019060113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019060113

Keywords:

Navigation