Skip to main content
Log in

Numerical Modeling of the Influence of the Relative Positions of a Propeller and Pylon on Turboprop Aircraft Noise

  • ACOUSTIC ECOLOGY. NOISE AND VIBRATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The influence of the position of the pylon on the characteristics of propeller noise has been studied as applied to environmental noise calculations for future aircraft. Components related to propeller noise itself and to a signal reflected from a pylon have been separated in the overall noise produced by the propeller–pylon system at the blade passing frequency, and the interference of these signals has been investigated. A numerical method has been developed based on matching of the following two computational blocks: a rotating domain in the immediate vicinity of the propeller and the outer static domain comprising the pylon. A noise calculation procedure by the integral Ffowcs Williams and Hawkings method has been implemented with the use of the Green’s function for the convective wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. I. V. Belyaev, V. F. Kopiev, and V. A. Titarev, Uch. Zap. TsAGI 45 (2), 78 (2014).

    Google Scholar 

  2. A. J. Gil, J. Bonet, J. Silla, and O. Hassan, Int. J. Numer. Methods Biomed. Eng., No. 26, 770 (2010).

  3. R. Sevilla, A. J. Gil, and M. Weberstadt, Comput. Struct., No. 181, 89 (2017).

  4. M. Dumbser and M. Kaser, J. Comput. Phys. 221 (2), 693 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Dumbser, M. Kaser, V. A. Titarev, and E. F. Toro, J. Comput. Phys. 226, 204 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. Venkatakrishnan, in Proc. 31st Aerospace Science Meeting and Exhibit (Reno, NV, January 11–14, 1993), Paper No. AIAA 93-0880.

  7. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd ed. (Springer, 2009).

    Book  MATH  Google Scholar 

  8. H. van der Ven and J. J. W. van der Vegt, J. Comput. Phys. 191 (41–42), 4747 (2002).

    Google Scholar 

  9. I. S. Men’shov and Y. Nakamura, in Proc. 6th Int. Symposium on CFD (Lake Tahoe, NV, 1995), Vol. 2, p. 815.

  10. A. M. Wissink, A. S. Lyrintzis, and R. C. Strawn, AIAA J. 34 (11), 2276 (1996).

    Article  ADS  Google Scholar 

  11. I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, and T. K. Kozubskaya, Vychisl. Metody Program. 13 (3), 110 (2012).

    Google Scholar 

  12. V. A. Titarev, S. V. Utyuzhnikov, and A. V. Chikitkin, Comput. Math. Math. Phys. 56 (11), 1919 (2016).

    Article  MathSciNet  Google Scholar 

  13. Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkrytye Sist., No. 7, 36 (2012).

  14. A. Najafi-Yazdi, G. A. Bres, and L. Mongeau, Proc. R. Soc. A 467, 144 (2011).

    Article  ADS  Google Scholar 

  15. G. A. Faranosov, V. M. Goloviznin, S. A. Karabasov, V. G. Kondakov, V. F. Kopiev, and M. A. Zaitsev, Comput. Fluids 88, 165 (2013).

    Article  Google Scholar 

  16. M. L. Shur, P. R. Spalart, and M. Kh. Strelets, Int. J. Aeroacoust. 4 (3–4), 213 (2005).

    Article  Google Scholar 

  17. V. F. Kop’ev, M. Yu. Zaitsev, N. N. Ostrikov, S. L. Denisov, S. Yu. Makashov, V. A. Anikin, and V. V. Gromov, Acoust. Phys. 62 (6), 741 (2016).

    Article  ADS  Google Scholar 

  18. B. Magliozzi, in Aeroacoustics of Flight Vehicles: Theory and Practice, Vol. 1: Noise Sources, Ed. by H. Hubbard (NASA Langley Research Center, Hampton, VA, 1991), p. 1.

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.V. Belyaev for his help with the acoustic processing of steady-state calculations. The research has been carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [13] and partially supported by a grant from the RF government pursuant to Decree no. 220 “On Measures to Attract Leading Scientists to Russian Higher Professional Education Institutions,” agreement no. 14.Z50.31.0032. The part of the study related to calculating single propeller noise for steady blade loads was carried out under the State Assignment of the Ministry of Education and Science of the Russian Federation (no. 9.1577.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Faranosov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titarev, V.A., Faranosov, G.A., Chernyshev, S.A. et al. Numerical Modeling of the Influence of the Relative Positions of a Propeller and Pylon on Turboprop Aircraft Noise. Acoust. Phys. 64, 760–773 (2018). https://doi.org/10.1134/S1063771018060118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018060118

Keywords:

Navigation