Skip to main content
Log in

An alternative approach for measuring the scattered acoustic pressure field of immersed single and multiple cylinders

  • Ocean Acousticics. Underwater Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The form function of an elastic target can be obtained from the scattered signal through a deconvolution process. The deconvolution process uses the signal measured from an acoustically hard target (reference signal) to compensate for the impulse response of the measurement system. In this paper, it is shown that this approach limits the usable frequency range of the signal and leads to inaccuracies in the final results. An alternative approach is proposed in which the reference signal is replaced by the specular echo. A procedure is described for extracting the specular echo from the measured signal even in cases where it is not completely isolated from the resonant components. Modifications are made to the existing deconvolution formulation and it is further extended to be applicable to multiple scattering measurements. Experimental results show that the new approach provides improved accuracy and wider usable frequency range in both single and multiple scattering experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Flax, L. R. Dragonette, and H. Uberall, J. Acoust. Soc. Am. 63, 723 (1978).

    Article  ADS  MATH  Google Scholar 

  2. H. Uberall, L. R. Dragonette, and L. Flax, J. Acoust. Soc. Am. 61, 711 (1977).

    Article  ADS  Google Scholar 

  3. J. W. Dickey and H. Uberall, J. Acoust. Soc. Am. 63, 319 (1978).

    Article  ADS  MATH  Google Scholar 

  4. L. Flax, G. C. Gaunaurd, and H. Uberall, in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Academic, New York, 1981), Vol. 15, pp. 191–293.

    Google Scholar 

  5. F. Honarvar, E. Enjilela, and A. N. Sinclair, Acoust. Phys. 55, 708 (2009).

    Article  ADS  Google Scholar 

  6. S. M. Hasheminejad and M. Maleki, Acoust. Phys. 54, 168 (2008).

    Article  ADS  Google Scholar 

  7. G. Maze, B. Taconet, and J. Ripoche, Phys. Lett. A 84, 309 (1981).

    Article  ADS  Google Scholar 

  8. G. Maze and J. Ripoche, Rev. Phys. Appl. 18, 319 (1983).

    Article  Google Scholar 

  9. M. de Billy, J. Acoust. Soc. Am. 79, 219 (1986).

    Article  ADS  Google Scholar 

  10. G. Maze and J. Ripoche, in Acoustic Resonance Scattering, Ed. by H. Uberall (Gordon and Breach Sci., 1992), pp. 69–103.

  11. D. Brill, G. C. Gaunaurd, and H. Uberall, Acoustica 53, 11 (1983).

    Article  MATH  Google Scholar 

  12. D. Brill, G. C. Gaunaurd, and H. Uberall, J. Acoust. Soc. Am. 72, 1067 (1982).

    Article  ADS  Google Scholar 

  13. F. Honarvar and A. N. Sinclair, J. Acoust. Soc. Am. 102, 41 (1997).

    Article  ADS  Google Scholar 

  14. F. Honarvar and A. N. Sinclair, Ultrasonics 36, 845 (1998).

    Article  Google Scholar 

  15. J. Mathieu, P. Schweitzer, and E. Tisserand, Meas. Sci. Technol. 13, 660 (2002).

    Article  ADS  Google Scholar 

  16. A. Scipioni, P. Rischette, P. Schweitzer, and J. Mathieu, Meas. Sci. Technol. 20, 1 (2009).

    Article  Google Scholar 

  17. E. Kheddioui, P. Pareige, and J. L. Izbicki, Acoust. Lett. 7, 157 (1993).

    Google Scholar 

  18. S. Lethuillier, P. Pareige, J. L. Izbicki, and J. M. Conoir, in Proceedings of the 4th European Conference on Underwater Acoustics (Rome, 1998), p. 837.

  19. S. Lethuillier, J. M. Conoir, P. Pareige, and J. L. Izbicki, Ultrasonics 41, 655 (2003).

    Article  Google Scholar 

  20. H. Uberall, Acoustic Resonance Scattering (Gordon and Breach Sci., 1992).

  21. S. K. Numrich and H. Uberall, in Physical Acoustics, Vol. XIX (Academic Press, New York, USA, 1992), Ch. 2, pp. 235–318.

    Google Scholar 

  22. F. Honarvar, PhD Dissertation (Univ. of Toronto, 1997).

  23. Y. Fan, PhD Dissertation (Univ. of Toronto, 2002).

  24. T. Li and M. Ueda, J. Acoust. Soc. Am. 86, 2363 (1989).

    Article  ADS  Google Scholar 

  25. J. Fortin, MSc Dissertation (Univ. of Toronto, 2005).

  26. L. W. Schmerr and S. J. Song, Ultrasonic Nondestructive Evaluation Systems, Models and Measurements (Springer, New York, 2007).

    Book  Google Scholar 

  27. S. Sodagar, F. Honarvar, and A. N. Sinclair, “Multiple Scattering of an Obliquely Incident Plane Acoustic Wave from a Grating of Immersed Cylindrical Shells,” Applied Acoustics 72, 1 (2011).

    Article  Google Scholar 

  28. J. D. Maynard, Acoust. Today 4(4) (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhang Honarvar.

Additional information

The article is published in its original form.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sodagar, S., Honarvar, F., Yaghootian, A. et al. An alternative approach for measuring the scattered acoustic pressure field of immersed single and multiple cylinders. Acoust. Phys. 57, 411–419 (2011). https://doi.org/10.1134/S1063771011030201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771011030201

Keywords

Navigation