Skip to main content
Log in

Determination of the Polarization Plane Specific Rotation in Gyrotropic Crystals of the Middle Category by the Spectrophotometric Method

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract—

A large number of modern functional single crystals of the middle category belong to gyrotropic media. In these crystals, when light propagates along the optical axis, rotation of the plane of its polarization is observed. In this study a spectrophotometric method is used to obtain the dispersion dependences of the rotation angle of the polarization plane. This method is based on measuring the intensity of the light passing through the polarizer–crystal–analyzer system. The crystal is a polished plane-parallel plate of a uniaxial gyrotropic crystal cut perpendicularly to the optical axis. Measurements are carried out on a Cary-5000 UV-Vis-NIR spectrophotometer in the wavelength range of 200–1200 nm using polarizers Glan–Taylor prisms. Polished plane-parallel plates of known SiO2 and α-LiIO3 crystals are used as samples. The obtained dispersion dependences of the spectral transmission coefficients have an oscillating character. The discrete values of the specific angles of rotation of the plane of polarization of light are calculated from the extrema on these dependences. These discrete values can be approximated by the Drude, Chandrasekhar, and Vyshin formulas, depending on what determines the nature of the rotational ability of the plane of polarization of light in each particular material. For the studied crystals the dependences of the modified Drude formula of the form 1/ρ = f2), which should have a linear character in the case of an ideal crystal, are plotted. The obtained experimental results are closely correlated to the available published data. The advantages of this method lie in its efficiency, the possibility of obtaining dispersion dependences of the specific rotation angle of the polarization plane, the need for a single sample, the possibility of assessing the nature of the rotational ability of specific crystals, and the possibility of evaluating the structural perfection of the studied crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Fizicheskii entsiklopedicheskii slovar’ (Physical Encyclopedic Dictionary), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1984.

    Google Scholar 

  2. Kaldybaeva, K.A., Konstantinova, A.F., and Perekalina, Z.B., Girotropiya odnoosnykh pogloshchayushchikh kristallov (Gyrotropy of Uniaxial Absorbing Crystals), Moscow: Institut Sotsial’no-Ekonomicheskikh i Proizvodstvenno-Ekologicheskikh Problem Investirovaniya, 2000.

  3. Blistanov, A.A., Kristally kvantovoi i nelineinoi optiki (Crystals of Quantum and Nonlinear Optics), Moscow: Mosk. Inst. Stalei i Splavov, 2000.

  4. Zernike, F., Midwinter, J.E., and Jacobs, S., Applied Nonlinear Optics, New York: John Wiley & Sons, 1973.

    Google Scholar 

  5. Nikogosyan, D.N., Nonlinear Optical Crystals: A Complete Survey, New York: Springer, 2005. https://doi.org/10.1007/b138685

    Book  Google Scholar 

  6. Sonin, A.S. and Vasilevskaya, A.S., Elektroopticheskie kristally (Electrooptical Crystals), Moscow: Atomizdat, 1971.

  7. Akusticheskie kristally (Acoustic Crystals), Shaskol’skaya, M.P., Ed., Moscow: Nauka, 1981.

  8. Jona, F. and Shirane, G., Ferroelectric Crystals, Macmillan, 1962.

    Google Scholar 

  9. Rez, I.S. and Poplavko, Yu.M., Dielektriki. Osnovnye svoistva i primeneniya v elektronike (Dielectrics: Basic Properties and Applications in Electronics), Moscow: 1989.

  10. Mason, W.P., Piezoelectric Crystals and Their Application to Ultrasonics, New York: Van Nostrand, 1950.

    Google Scholar 

  11. Sharapov, V., P’ezoelektricheskie datchiki (Piezoceramic Sensors), Moscow: Tekhnosfera, 2006; Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-15311-2

  12. Novik, V.K., Gavrilova, N.D., and Fel’dman, N.B., Piroelektricheskie preobrazovateli (Pyroelectric Converters), Moscow: Sovetskoe Radio, 1979.

  13. Fizicheskaya entsiklopediya, v 5 tomakh (Physical Encyclopedia, in 5 vols.), vol. 1: Aaronova–Boma effekt — dlinnye linii (Aharonov–Bohm Effect: Long Lines), Moscow: Sovetskaya Entsiklopediya, 1988.

  14. Melancholin, N.M., Metody issledovaniya opticheskikh svoistv kristallov (Methods for Studying the Optical Properties of Crystals), Moscow: Nauka, 1969.

  15. Konstantinova, A.F., Grechushnikov, B.N., Bokut’, B.V., and Valyashko, E.G., Opticheskie svoistva kristallov (Optical Properties of Crystals), Minsk: Navuka i Tekhnika, 1995.

  16. Kizel’, V.A. and Burkov, V.I., Girotropiya kristallov (Gyrotropy of Crystals), Moscow: Nauka, 1980.

  17. Shubnikov, A.V., Osnovy opticheskoi kristallografii (Fundamentals of Optical Crystallography), Moscow: Izd-vo Akad. Nauk SSSR, 1959.

  18. Shaskol’skaya, M.P., Kristallografiya (Crystallography), Moscow: Vysshaya Shkola, 1976.

    Google Scholar 

  19. Fedorov, F.I., Teoriya girotropii (Theory of Gyrotropy), Minsk: Nauka i Tekhnika, 1976.

  20. Wei, A., Wang, B., Qi, H., and Yuan, D., Optical activity along the optical axis of crystals with ordered langasite structure, Cryst. Res. Technol., 2006, vol. 41, no. 4, pp. 371–374. https://doi.org/10.1002/crat.200510589

    Article  CAS  Google Scholar 

  21. Heimann, R.B., Hengst, M., Rossberg, M., and Bohm, J., Giant optical rotation in piezoelectric crystals with calcium gallium germanate structure, Phys. Status Solidi (a), 2003, vol. 195, no. 2, pp. 468–474. https://doi.org/10.1002/pssa.200305950

    Article  ADS  Google Scholar 

  22. Wang, Z., Yuan, D., Wei, A., Qi, H., Shi, X., Xu, D., and Lü, M., Growth and optical activities of Sr3TaGa3Si2O14 single crystals, J. Cryst. Growth, 2004, vol. 263, nos. 1–4, pp. 389–393. https://doi.org/10.1016/j.jcrysgro.2003.11.098

    Article  ADS  CAS  Google Scholar 

  23. Kozlova, N.S., Goreeva, Zh.A., and Zabelina, E.V., Testing quality assurance of single crystals and stock on their base, 2nd Int. Ural Conf. on Measurements (UralCon), Chelyabinsk, Russia, 2017, IEEE, 2017, pp. 15–22. https://doi.org/10.1109/uralcon.2017.8120681

  24. Chandrasekhar, S., Optical rotatory dispersion of crystals, Proc. R. Soc. London. Ser. A, 1961, vol. 259, no. 1299, pp. 531–553. https://doi.org/10.1098/rspa.1961.0007

    Article  ADS  CAS  Google Scholar 

  25. Jankmu̇, V. and Vyšín, V., Interpretation of the optical activity of TeO2 and LiIO3, Opt. Commun., 1971, vol. 3, no. 5, pp. 308–309. https://doi.org/10.1016/0030-4018(71)90093-9

    Article  ADS  Google Scholar 

  26. Herreros-Cedrés, J., Hernández-Rodríguez, C., and Guerrero-Lemus, R., Temperature-dependent gyration tensor of LiIO3 single crystal using the high-accuracy universal polarimeter, J. Appl. Crystallogr., 2002, vol. 35, no. 2, pp. 228–232. https://doi.org/10.1107/s0021889802000778

    Article  ADS  Google Scholar 

  27. Vyšín, V. and Janku̇, V., Note on the interpretation of the experimental data of the optical activity in crystals, Opt. Commun., 1971, vol. 3, no. 5, pp. 305–307. https://doi.org/10.1016/0030-4018(71)90092-7

    Article  ADS  Google Scholar 

  28. Dimov, T., Bunzarov, Z., Iliev, I., Petkova, P., and Tzoukrovski, Y., Dispersion of optical activity of magnesium sulfite hexahydrate single crystals, J. Phys.: Conf. Ser., 2010, vol. 253, no. 1, p. 012080. https://doi.org/10.1088/1742-6596/253/1/012080

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Ministry of Education and Science as part of state task FSME-2023-0003 for universities. The measurements were carried out at the Interdepartmental Educational and Testing Laboratory of Semiconductor Materials and Dielectrics “Single Crystals and Stock on Their Base,” National University of Science and Technology MISIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zabelina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabelina, E.V., Shahin, R., Kozlova, N.S. et al. Determination of the Polarization Plane Specific Rotation in Gyrotropic Crystals of the Middle Category by the Spectrophotometric Method. Russ Microelectron 52, 757–763 (2023). https://doi.org/10.1134/S1063739723080103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723080103

Keywords:

Navigation