Skip to main content
Log in

Features of Obtaining Composite Electrode Material of a CNT/RuO2·xH2O Supercapacitor by Electrophoretic Codeposition

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

For the solution of the problem of energy storage, new and more efficient functional electrode materials for electrochemical devices such as supercapacitors and their formation technologies are being developed. In particular, using the method of electrolyte-free electrophoretic codeposition, a composite material of carbon nanotubes (CNTs)/RuO2·xH2O with high specific capacitance and power values can be obtained. In this study, the optimal composition of a 50-mL suspension for electrophoretic deposition (EPD) is determined by sedimentation analysis. It is demonstrated that in the course of the iodoform reaction with acetone, I2 (20 mg) ensures the saturation of particle surfaces with protons and their deposition on the cathode, thus replacing the electrolytes that introduce impurities into the final coating. It is established that the presence of a dispersing agent (5 mg of hydroxypropyl cellulose) is required in the suspension to maintain stability. The possibility of removing hydroxypropyl cellulose during annealing in air at a temperature of about 260°C is studied and confirmed by the methods of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Composite material, processed in this way and obtained from a suspension containing double-walled CNTs and RuO2·xH2O, equal to 2 and 10 mg, respectively, has a capacity of 21.5 and 8.6 mF/cm2 at cyclic sweep rates of 10 and 100 mV/s, respectively. It is established that elevated temperatures and prolonged heat treatment lead to a deterioration in the electrochemical characteristics due to the degradation of RuO2·xH2O and the CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Miller, J.R. and Simon, P., Electrochemical capacitors for energy management, Science, 2008, vol. 321, no. 5889, pp. 651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  PubMed  Google Scholar 

  2. Electrochemical Capacitors: Theory, Materials and Applications, Inamuddin, Ahmer, M.F., Asiri, A.M., and Zaidi, S., Eds., Millersville, Pa.: Materials Research Forum, 2018.

    Google Scholar 

  3. Metal Oxides in Supercapacitors: A Volume in Metal Oxides, Dubal, D.P. and Gomez-Romero, P., Eds., Amsterdam: Elsevier, 2017. https://doi.org/10.1016/B978-0-12-810464-4.01001-9

  4. Ho, M.Y., Khiew, P.S., Isa, D., Tan, T.K., Chiu, W.S., and Chia, C.H., A review of metal oxide composite electrode materials for electrochemical capacitors, Nano, 2014, vol. 9, no. 6, p. 1430002. https://doi.org/10.1142/S1793292014300023

    Article  CAS  Google Scholar 

  5. Yoo, T.-H., Kim, S.M., Lim, J.A., Kim, J.-H., Sang, B.-I., and Song, Y.-W., High-speed annealing of hydrous ruthenium oxide nanoparticles by intensely pulsed white light for supercapacitors, J. Electrochem. Soc., 2013, vol. 160, no. 10, pp. A1772–A1776. https://doi.org/10.1149/2.063310jes

    Article  CAS  Google Scholar 

  6. Kahram, M., Asnavandi, M., and Dolati, A., Synthesis and electrochemical characterization of sol-gel-derived RuO2 carbon nanotube composites, J. Solid State Electrochem., 2013, vol. 18, no. 4, pp. 993–1003. https://doi.org/10.1007/s10008-013-2346-2

    Article  CAS  Google Scholar 

  7. Sieben, J.M., Morallón, E., and Cazorla-Amorós, D., Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methods, Energy, 2013, vol. 58, pp. 519–526. https://doi.org/10.1016/j.energy.2013.04.077

    Article  CAS  Google Scholar 

  8. Algethami, N., Alkhammash, H.I., Sultana, F., Mushtaq, M., Zaman, A., Ali, A., Althubeiti, Kh., and Yang, Q., Preparation of RuO2/CNTs by atomic layer deposition and its application as binder free cathode for polymer based Li–O2 battery, Int. J. Electrochem. Sci., 2022, vol. 17, no. 9, p. 220967. https://doi.org/10.20964/2022.09.62

    Article  CAS  Google Scholar 

  9. Electrophoretic Deposition of Nanomaterials, Dickerson, J.H. and Boccaccini, A.R., Eds., Nanostructure Science and Technology, New York: Springer, 2012. https://doi.org/10.1007/978-1-4419-9730-2

  10. Alekseyev, A., Lebedev, E., Gromov, D., and Ryazanov, R., Formation of sponge-like composite for supercapacitor electrode through electrophoretic deposition and annealing of CNT/Ni(OH)2x, 2018 IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Moscow, 2018, IEEE, 2018, pp. 1585–1589. https://doi.org/10.1109/EIConRus.2018.8317403

  11. Besra, L. and Liu, M., A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci., 2007, vol. 52, no. 1, pp. 1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001

    Article  CAS  Google Scholar 

  12. Szleifer, I. and Yerushalmi-Rozen, R., Polymers and carbon nanotubes—Dimensionality, interactions and nanotechnology, Polymer, 2005, vol. 46, no. 19, pp. 7803–7818. https://doi.org/10.1016/j.polymer.2005.05.104

    Article  CAS  Google Scholar 

  13. Kumar, A. and Dixit, C.K., Methods for characterization of nanoparticles, Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, Nimesh, S., Chandra, R., and Gupta, N., Sawston: Woodhead Publ., 2017, pp. 43–58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1

  14. Talebi, T., Raissi, B., and Maghsoudipour, A., The role of addition of water to non-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs, Int. J. Hydrogen Energy, 2010, vol. 35, no. 17, pp. 9434–9439. https://doi.org/10.1016/j.ijhydene.2009.12.152

    Article  CAS  Google Scholar 

  15. Brown, D.R. and Salt, F.W., The mechanism of electrophoretic deposition, J. Appl. Chem., 1965, vol. 15, no. 1, pp. 40–48. https://doi.org/10.1002/jctb.5010150505

    Article  CAS  Google Scholar 

  16. Johnson, D.W., Dobson, B.P., and Coleman, K.S., A manufacturing perspective on graphene dispersions, Curr. Opin. Colloid Interface Sci., 2015, vol. 20, nos. 5–6, pp. 367–382. https://doi.org/10.1016/j.cocis.2015.11.004

    Article  CAS  Google Scholar 

  17. Everett, D.H., Basic Principles of Colloid Science, London: Royal Society of Chemistry, 1988. https://doi.org/10.1039/9781847550200

    Book  Google Scholar 

  18. Laue, Th. and Plagens, A., Named Organic Reactions, Chichester, UK: Wiley, 2005, 2nd ed. https://doi.org/10.1002/0470010428

    Book  Google Scholar 

  19. Bordbar, M., Alimohammadi, T., Khoshnevisan, B., Khodadadi, B., and Yeganeh-Faal, A., Preparation of MWCNT/TiO2–Co nanocomposite electrode by electrophoretic deposition and electrochemical study of hydrogen storage, Int. J. Hydrogen Energy, 2015, vol. 40, no. 31, pp. 9613–9620. https://doi.org/10.1016/j.ijhydene.2015.05.138

    Article  CAS  Google Scholar 

  20. Kebede, Z. and Lindquist, S.-E., Donor-acceptor interaction between non-aqueous solvents and I2 to generate \({\text{I}}_{3}^{ - }\), and its implication in dye sensitized solar cells, Sol. Energy Mater. Sol. Cells, 1999, vol. 57, no. 3, pp. 259–275. https://doi.org/10.1016/s0927-0248(98)00178-010.1016/s0927-0248(98)00178-0

    Article  CAS  Google Scholar 

  21. Hanaor, D., Michelazzi, M., Leonelli, C., and Sorrell, C.C., The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, J. Eur. Ceram. Soc., 2012, vol. 32, no. 1, pp. 235–244. https://doi.org/10.1016/j.jeurceramsoc.2011.08.015

    Article  CAS  Google Scholar 

  22. Rahaman, M.N., Ceramic Processing, Boca Raton: CRC Press, 2017, 2nd ed. https://doi.org/10.1201/9781315157160

    Book  Google Scholar 

  23. Bannov, A.G., Popov, M.V., and Kurmashov, P.B., Thermal analysis of carbon nanomaterials: advantages and problems of interpretation, J. Therm. Anal. Calorim., 2020, vol. 142, no. 1, pp. 349–370. https://doi.org/10.1007/s10973-020-09647-2

    Article  CAS  Google Scholar 

  24. Hu, H., Zhao, B., Itkis, M.E., and Haddon, R.C., Nitric acid purification of single-walled carbon nanotubes, J. Phys. Chem. B, 2003, vol. 107, no. 50, pp. 13838–13842. https://doi.org/10.1021/jp035719i

    Article  CAS  Google Scholar 

  25. Wang, X., You, Zh., and Ruan, D., Hydrous ruthenium oxide with high rate pseudo-capacitance prepared by a new sol-gel process, Chin. J. Chem. Phys., 2006, vol. 19, no. 4, pp. 341–346. https://doi.org/10.1360/cjcp2006.19(4).341.6

    Article  CAS  Google Scholar 

  26. Liu, H., Gan, Wp., Liu, Zw., and Zheng, F., Composition change and capacitance properties of ruthenium oxide thin film, J. Cent. South Univ., 2015, vol. 22, no. 1, pp. 8–13. https://doi.org/10.1007/s11771-015-2488-8

    Article  CAS  Google Scholar 

  27. Kim, T.-H., Park, M.-H., Ryu, J., and Yang, C.-W., Oxidation mechanism of nickel oxide/carbon nanotube composite, Microsc. Microanal., 2013, vol. 19, no. S5, pp. 202–206. https://doi.org/10.1017/S143192761301266X

    Article  CAS  PubMed  Google Scholar 

  28. Cormier, Z.R., Andreas, H.A., and Zhang, P., Temperature-dependent structure and electrochemical behavior of RuO2/carbon nanocomposites, J. Phys. Chem. C, 2011, vol. 115, no. 39, pp. 19117–19128. https://doi.org/10.1021/jp206932w

    Article  CAS  Google Scholar 

  29. Bhatt, N., Gupta, P.K., and Naithani, S., Hydroxypropyl cellulose from α-cellulose isolated from Lantana camara with respect to DS and rheological behaviour, Carbohydr. Polym., 2011, vol. 86, no. 4, pp. 1519–1524. https://doi.org/10.1016/j.carbpol.2011.06.054

    Article  CAS  Google Scholar 

  30. Ratha, S. and Samantara, A.K., Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques, SpringerBriefs in Materials, Singapore: Springer Singapore, 2018. https://doi.org/10.1007/978-981-13-3086-5

  31. Liu, X. and Pickup, P.G., Ru oxide supercapacitors with high loadings and high power and energy densities, J. Power Sources, 2008, vol. 176, no. 1, pp. 410–416. https://doi.org/10.1016/j.jpowsour.2007.10.076

    Article  CAS  ADS  Google Scholar 

  32. Fang, Q.L., Evans, D.A., Roberson, S.L., and Zheng, J.P., Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc., 2001, vol. 148, p. A833. https://doi.org/10.1149/1.1379739

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-38-90245 and by the state task no. FSMR-2023-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alekseyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseyev, A.V., Pereverzeva, S.Y., Ryazanov, R.M. et al. Features of Obtaining Composite Electrode Material of a CNT/RuO2·xH2O Supercapacitor by Electrophoretic Codeposition. Russ Microelectron 52, 587–598 (2023). https://doi.org/10.1134/S1063739723070211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723070211

Keywords:

Navigation