Skip to main content
Log in

Mathematical Modeling of a Self-Learning Neuromorphic Network Based on Nanosized Memristive Elements with a 1T1R-Crossbar-Architecture

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Artificial neural networks play an important role in the modern world. Their main field of application is the tasks of recognizing and processing images, speech, robotics, and unmanned systems. The use of neural networks is related to high computational costs. In part, it was this fact that held back their progress, and only with the advent of high-performance computing systems did the active development of this area begin. Nevertheless, the issue of speeding up the work of neural network algorithms is still relevant. One of the promising areas is the creation of analog implementations of artificial neural networks, since analog calculations are performed orders of magnitude faster than digital ones. The memristor acts as the base element on which such systems are built. A memristor is a resistor whose conductivity depends on the total charge passed through it. Combining memristors into a matrix (crossbar) allows one layer of artificial synapses to be implemented at the hardware level. Traditionally, the Spike Timing Dependent Plasticity (STDP) method based on Hebb’s rule has been used as an analog learning method. A two-layer fully connected network with one layer of synapses is modeled. The memristive effect can manifest itself in different substances (mainly in different oxides), so it is important to understand how the characteristics of memristors affect the parameters of the neural network. Two oxides are considered: titanium oxide (TiO2) and hafnium oxide (HfO2). For each oxide, a parametric identification of the corresponding mathematical model is performed for the best agreement with the experimental data. The neural network is tuned depending on the oxide used and the process of learning it to recognize five patterns is simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Wong, H.-S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., and Frederic, T., Metal-oxide RRAM, Proc. IEEE, 2012, vol. 100, no. 6, pp. 1951–1970. https://doi.org/10.1109/JPROC.2012.2190369

    Article  Google Scholar 

  2. Yang, J.J., Strukov, D.B., and Stewart, D.R., Memristive devices for computing, Nat. Nanotechnol., 2013, vol. 8, no. 1, pp. 13–24. https://doi.org/10.1038/nnano.2012.240

    Article  Google Scholar 

  3. Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., Zhang, J., Song, W., Dávila, N., Graves, C.E., Li, Z., Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q., Williams, R.S., Yang, J.J., and Xia, Q., Analogue signal and image processing with large memristor crossbars, Nat. Electron., 2018, vol. 1, no. 1, pp. 52–59. https://doi.org/10.1038/s41928-017-0002-z

    Article  Google Scholar 

  4. Hu, M., Graves, C.E., Li, C., Li, Y., Ge, N., Montgomery, E., Davila, N., Jiang, H., Williams, R.S., Yang, J.J., Xia, O., and Strachan, J.P., Memristor-based analog computation and neural network classification with a dot product engine, Adv. Mater., 2018, vol. 30, no. 9, p. 1705914. https://doi.org/10.1002/adma.201705914

    Article  Google Scholar 

  5. Morozov, A.Yu., Reviznikov, D.L., and Abgaryan, K.K., Issuues of implementing neural network algorithms on memristor crossbars, Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh., 2019, vol. 22, no. 4, pp. 272–278. https://doi.org/10.17073/1609-3577-2019-4-272-278

    Article  Google Scholar 

  6. Diehl, P. and Cook, M., Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Front. Comput. Neurosci., 2015, vol. 9, p. 99. https://doi.org/10.3389/fncom.2015.00099

    Article  Google Scholar 

  7. Ambrogio, S., Milo, V., Wang, Z.-Q., Ramaswamy, N., Balatty, S., Carboni, R., Calderoni, A., and Lelmibi, D., Neuromorphic learning and recognition with one-transistor-one-resistor synapses and bistable metal oxide RRAM, IEEE Trans. Electron Dev., 2016, vol. 63, no. 4, pp. 1508–1515. https://doi.org/10.1109/TED.2016.2526647

    Article  Google Scholar 

  8. Guo, Y., Wu, H., Gao, B., and Qian, H., Unsupervised learning on resistive memory array based spiking neural networks, Front. Neurosci., 2019, vol. 13, art. 812. https://doi.org/10.3389/fnins.2019.00812

    Article  Google Scholar 

  9. Milo V. Laudato, M., Ambrosi, E., Chicca, E., Pedretti, G., Bricalli, A., Bianchi, S., and Ielmini, D., Resistive switching synapses for unsupervised learning in feed-forward and recurrent neural networks, in Proceedings of the International Symposium on Circuits and Systems, Florence, Italy: IEEE, 2018, pp. 1–5. https://doi.org/10.1109/ISCAS.2018.8351824

  10. Pedretti, G., Bianchi, S., Milo, V., Calderoni, A., Ramaswamy, N., and Ielmini, D., Modeling-based design of brain-inspired spiking neural networks with RRAM learning synapses, in Proceedings of the International Electron Devices Meeting, San Francisco, CA, IEEE, 2017, pp. 28.1.1–28.1.4. https://doi.org/10.1109/IEDM.2017.8268467

  11. Milo, V., Ielmini, D., and Chicca, E., Attractor networks and associative memories with STDP learning in RRAM synapses, in Proceedings of the International Electron Devices Meeting, San Francisco, CA, IEEE, 2017, pp. 11.2.1–11.2.4. https://doi.org/10.1109/IEDM.2017.8268369

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., The missing memristor found, Nature (London, U.K.), 2008, vol. 453, no. 7191, pp. 80–83. https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  13. Yang, J.J., Pickett, M.D., Xuema, L., Ohlberg, D.A.A., Stewart, D.R., and Williams, R.S., Memristive switching mechanism for metal/oxide/metal nanodevices, Nat. Nanotechnol., 2008, vol. 3, no. 7, pp. 429–433. https://doi.org/10.1038/nnano.2008.160

    Article  Google Scholar 

  14. Pickett, M.D., Stukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., and Williams, R.S., Switching dynamics in titanium dioxide memristive devices, J. Appl. Phys., 2009, vol. 106, no. 7, art. 074508. https://doi.org/10.1063/1.3236506

    Article  Google Scholar 

  15. Joglekar, Y.N. and Wolf, S.J., The elusive memristor: Properties of basic electrical circuits, Eur. J. Phys., 2009, vol. 30, no. 4, p. 661. https://doi.org/10.1088/0143-0807/30/4/001

    Article  MATH  Google Scholar 

  16. Biolek, Z., Biolek, D., and Biolkova, V., SPICE model of memristor with nonlinear dopant drift, Radioengineering, 2009, vol. 18, no. 2, pp. 210–214. https://www. radioeng.cz/fulltexts/2009/09_02_210_214.pdf.

    MATH  Google Scholar 

  17. Prodromakis, T., Peh, B.P., Papavassiliou, C., and Toumazou, C., A versatile memristor model with nonlinear dopant kinetics, IEEE Trans. Electron Dev., 2011, vol. 58, no. 9, pp. 3099–3105. https://doi.org/10.1109/TED.2011.2158004

    Article  Google Scholar 

  18. Zha, J., Huang, H., and Liu, Y., A novel window function for memristor model with application in programming analog circuits, IEEE Trans. Circuits Syst. II: Express Briefs, 2015, vol. 63, no. 5, pp. 423–427. https://doi.org/10.1109/TCSII.2015.2505959

    Article  Google Scholar 

  19. Kvatinsky, S., Friedman, E.G., Kolodny, A., and Weiser, U.C., TEAM: ThrEshold adaptive memristor model, IEEE Trans. Circuits Syst. I: Reg. Papers, 2013, vol. 60, no. 1, pp. 211–221. https://doi.org/10.1109/TCSI.2012.2215714

    Article  MathSciNet  MATH  Google Scholar 

  20. Kvatinsky, S., Ramadan, M., Friedman, E.G., and Kolodny, A., VTEAM: a general model for voltage-controlled memristors, IEEE Trans. Circuits Syst. II: Express Briefs, 2015, vol. 62, no. 8, pp. 786–790. https://doi.org/10.1109/TCSII.2015.2433536

    Article  Google Scholar 

  21. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E., and Rogers, S., A memristor device model, IEEE Electron Dev. Lett., 2011, vol. 32, no. 10, pp. 1436–1438. https://doi.org/10.1109/LED.2011.2163292

    Article  Google Scholar 

  22. Zheng, G., Mohanty, S.P., Kougianos, E., and Okobiah, O., Polynomial metamodel integrated Verilog-AMS for memristor-based mixed-signal system design, in Proceedings of the International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, IEEE, 2013, pp. 916–919. https://doi.org/10.1109/MWSCAS.2013.6674799

  23. Mladenov, V., Analysis of memory matrices with HfO2 memristors in a PSpice environment, Electronics, 2019, vol. 8, no. 4, p. 383. https://doi.org/10.3390/electronics8040383

    Article  Google Scholar 

  24. Teplov, G.S. and Gornev, E.S., Multilevel bipolar memristor model considering deviations of switching parameters in the Verilog-A language, Russ. Microelectron., 2019. vol. 48, no. 3, pp. 131–142. https://doi.org/10.1134/S1063739719030107

    Article  Google Scholar 

  25. Morozov, A.Y. and Reviznikov, D.L., Adaptive interpolation algorithm based on a kd-tree for numerical integration of systems of ordinary differential equations with interval initial conditions, Differ. Equat., 2018, vol. 54, no. 7, pp. 945–956. https://doi.org/10.1134/S0012266118070121

    Article  MathSciNet  MATH  Google Scholar 

  26. Morozov, A.Yu., Reviznikov, D.L., and Gidaspov, V.Yu., Adaptive interpolation algorithm based on a kd-tree for the problems of chemical kinetics with interval parameters, Math. Models Comput. Simul., 2019, vol. 11, no. 4, pp. 622–633. https://doi.org/10.1134/S2070048219040100

    Article  MathSciNet  MATH  Google Scholar 

  27. Morozov, A.Y., Abgaryan, K.K., and Reviznikov, D.L., Mathematical model of a neuromorphic network based on memristive elements, Chaos, Solitons Fract., 2021, vol. 143, art. 110548. https://doi.org/10.1016/j.chaos.2020.110548

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 19-29-03051 mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Morozov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, A.Y., Abgaryan, K.K. & Reviznikov, D.L. Mathematical Modeling of a Self-Learning Neuromorphic Network Based on Nanosized Memristive Elements with a 1T1R-Crossbar-Architecture. Russ Microelectron 50, 628–637 (2021). https://doi.org/10.1134/S1063739721080060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739721080060

Keywords:

Navigation