Skip to main content
Log in

Positronics and nanotechnologies: Possibilities of studying nanoobjects in critical engineering materials using positron annihilation spectrometry

  • Process Characterization
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

It is shown that positron annihilation spectroscopy (PAS) is one of the efficient methods for determining the sizes of nanodefects (vacancies, vacancy clusters); free volumes of pores; cavities, and voids; their concentrations and the chemical composition at the annihilation site (location) in nanomaterials and other critical engineering materials. A brief review of experimental studies of nanodefects in porous silicon, silicon, and quartz monocrystal irradiated by protons as well as quartz powders are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gol’danskii, V.I., Fizicheskaya khimiya pozitrona i pozitroniuma (Physical Chemistry of a Positron and Positronium), Moscow: Nauka, 1968.

    Google Scholar 

  2. Grafutin, V.I. and Prokop’ev, E.P., Usp. Fiz. Nauk, 2002, vol. 172, no. 2, p. 67.

    Article  Google Scholar 

  3. Prokop’ev, E.P., Timoshenkov, S.P., Grafutin, V.I., and Myasishcheva, G.G., Pozitronika ionnykh kristallov, poluprovodnikov i metallov (Positronics of Ionic Crystals, Semiconductors, and Metals), Moscow: Moscow Institute of Electronic Engineering (MIET), 1999.

    Google Scholar 

  4. Schafer, H.E., Mechanical Properties and Deformation Behavior of Materials Having Ultrathin Microstructure, Nastasi, M.A., Parkin, D.M., and Glieter, H., Eds., Netherlands, Dordrechts: Kluver Academic Press, 1993, p. 81.

    Google Scholar 

  5. Druzkov, A.P. and Perminov, D.A., Characterization of Nunostructural Features in Reactor Materials Using Positron Annihilation Spectrometry in Nuclear Materials Developments, Chapter 5, Keister, J.F., Ed., ISBN -60021-432-0.2007, North Science Publishers, Inc.

  6. Gusev, A.I., Nanomaterialy, nanostructury, nanotechnologii (Nanomareials, Nanostructures, Nanotechnologies]), Moscow: Fizmatlit, 2005.

    Google Scholar 

  7. Wurschum, R., Schaefer, H., Edelstein, A.S., and Cammarata, R.C, Nanomaterials: Synthesis, Properties, and Applications, Bristol Institute Physics, 1996, p. 277.

  8. Rempel’, A.A., Effekty uporyadocheniya v nestekhimetricheskikh soedineniyakh vnedreniya, (The Ordering Effects in Nonstoichiometric Compounds for Insertion), Yekaterinburg: Nauka, 1992.

    Google Scholar 

  9. Krause-Rehberg, R. and Leipner, H.S., Positron Annihilation in Solids. Defect Studies, Berlin: Springer, 1999.

    Google Scholar 

  10. Batavin, V.V., Drouzhkov, A.P., Garnak, A.E., et al., Mikroelektronika, 1980, vol. 9, no. 11.

  11. Prokop’ev, E.P., Poverkhnost’, 1993, no. 10, p. 91.

  12. Fedorov, V.A., Prilipko, V.I., Prokop’ev, E.P., and Aref’ev, K.P., Izv. Vuzov, Fizika, 1982, no. 5, p. 40.

  13. Aref’ev, K.P, Prilipko, V.I., Prokop’ev, E.P., and Fedorov, V.A., Izv. Vuzov. Fizika, 1982, no. 8, p. 117.

  14. Prilipko, V.I. and Prokop’ev, E.P. Elektron. Prom., 1980, nos. 11–12, p. 20.

  15. Britkov, O.M., Gavrilov, C.A., Grafutin, V.I., Dyagilev, V.V, Kalugin, V.V., ILyukhina, O.V., Myasishcheva G.G, Svetlov-Prokop’ev, E.P., Timoshenkov, A.S., and Funtikov, Yu.V., Voprosy Atom. Nauki Tekhn. (Sarov), 2004, no. 3, p. 40.

  16. Grafutin, V.I., Ilyukhina, O.V., Kalugin, V.V., Myasishcheva, G.G, Prokop’ev, E.P., Funtikov, Yu.V., Timoshchenkov, A.S., Grigor’ev, D.K., and Timoshenkov, S.P., Fiz. Khim. Obrab. Mater., 2006, no. 5, p.5..

  17. Gavrilov, C.A., Grafutin, V.I., Ilyukhina, O.V., Myasishcheva G.G, Prokop’ev, E.P., Timoshchenkov, A.S., and Funtikov, Yu.V., Pis’ma Zh. Eksp. Teor. Fiz., 2005, vol. 81, nos. 11—12, p. 680.

    Google Scholar 

  18. Prokop’ev, E.P., Abstracts of Papers, 46 Soveschanie po yadernoi spektrometrii i structure yadernogo yadra (The 46th Meeting on Nuclear Spectroscopy and the Structure of an Atomic Nucleus), St. Petersburg: PIYaF, 1996, p.377.

    Google Scholar 

  19. Jean, Y.C., Microchem. J., 1990, vol. 70, no. 1, p. 72.

    Article  Google Scholar 

  20. Georgy, Roger B., J. Appl. Phys., 1999, vol. 70, no. 9, p. 4665.

    Google Scholar 

  21. Tao, S.J., J. Phys. Chem., 1972, vol. 56, no. 11, p. 5499.

    Article  Google Scholar 

  22. Eldrup, M., Lighbody, D., and Sherwood, J.N., Chem. Phys., 1981, vol. 63, no. 1, p. 51.

    Article  Google Scholar 

  23. Shantarovich, V.P., Yampol’skii, Yu.P., and Kevdina, I.B., Khim. Vys. Energ., 1994, vol. 28, no. 1, p. 55.

    Google Scholar 

  24. Kevdina, I.B, Sivergin, Yu.M., and Shantarovich, V.P., Khim. Vys. Energ., 1996, vol. 30, no. 2, p. 145.

    Google Scholar 

  25. Britkov, O.M., Gavrilov, C.A., Grafutin, V.P., et al., Peterburg. Zh. Elektron., 2007, no. 3, p. 15.

  26. Grafutin, V.P., Ilyukhina, O.V., Myasischeva, G.G., Kalugin, V.V., Prokop’ev, V.V., Timoshenkov, S.P., Khmrlevskii, N.O., and Funtikov, Yu.V., Mikroelektronika, 2005, vol. 34, no. 3, p. 218.

    Google Scholar 

  27. Grafutin, V.P., Zaluzhnyi, A.G., Timoshenkov, S.P., Britkov, O.M., Ilyukhina, O.V., Komlev, V.P., Myasishcheva, G.G., Prokop’ev, E.P., and Funtikov, Ya.V, Poverkhnost’, 2008, no. 9.

  28. Babichev, A.P., Babushkina, N.A., Brutkovskii A.M., et al., Fizicheskie velichiny, Spravochnik, (Physical Quantities: Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991

    Google Scholar 

  29. Kozlov, V.A. and Kozlovskii, V.V., Fiz. Tekhn. Poluprovod., 2001, vol. 35, no. 7, p. 769.

    Google Scholar 

  30. Kozlovskii, V.V., Kozlov, V.A., and Lomasov, V.N., Fiz. Tekhn. Poluprovod., 2000, vol. 34, no. 2, p. 129.

    Google Scholar 

  31. Grafutin, V.P., Zaluzhnyi, A.G., Timoshenkov, S.P., Britkov, O.M., Ilyukhina O.V., Myasishcheva, G.G., Prokop’ev, E.P., and Funtikov, Yu.V., Zh. Eks. Teor. Fiz., 2008, vol. 133, no. 3, pp. 723–734.

    Google Scholar 

  32. Prokop’ev E.P., Pis’ma Zh. Eks. Teor. Fiz., 1990, vol. 16, no. 24, p. 6.

    Google Scholar 

  33. Dannefaer, S., J. Phys. Stat. Sol. (a), 1987, vol. 102, no. 2, p. 481.

    Article  Google Scholar 

  34. Dannefaer, S., Dean, G.W., Kerr, D.P., and Hogg, B.G., Phys. Rev., 1976, vol. B 14, p. 2709.

    Google Scholar 

  35. Fuchs, W., Holtzhauser, U., Mantl, S., Richter, F.W., and Strum. F., Phys. Stat. Sol. (b)., 1978, vol. 89, no. 1, p. 69.

    Article  Google Scholar 

  36. Dannefaer, S., Fruensgaard, N., Kupsa, S, Kerr, D.P., and Hogg, B.G., Canad.J. Phys., 1983, vol. 61, p. 451.

    Google Scholar 

  37. Dannefaer, S., Kerr, D.P., and Hogg, B.G., J. Appl. Phys., 1983, vol. 54, p. 155.

    Article  Google Scholar 

  38. Bourgouin, J. and Lanno, M., Point Defects in Semiconductors, Heidelberg: Springer, 1978.

    Google Scholar 

  39. Prokop’ev, E.P., Ps lokalizovannye v kristalle (Ps Localized in Crystals), Available from Central Research Institute Elektronika, P-3634, MPS VIMI “Tekhnika, tekhnologiya, ekonomika”, Moscow, 1983, no. 9, Ser. O.

  40. Ikari, H. and Fujiwara, K., Studying of Temperature Dependence of Pulse Distribution of Positronium in α-Quartz, J. Phys. Soc. Japan, 1979, vol. 46, no. 1, pp. 92–101.

    Article  Google Scholar 

  41. Bartenev, G.M., Tsyganov, A.D., Prokop’ev, E.P., and Varisov A.Z., Positron Annihilation in Ionic Crystals, Usp. Fiz. Nauk, 1971, vol. 103, no. 2, pp. 339–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Grafutin.

Additional information

Original Russian Text © V.I. Grafutin, E.P. Prokop’ev, S.P. Timoshenkov, S.S. Funtikov, 2009, published in Mikroelektronika, 2009, Vol. 38, No. 6, pp. 464–475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafutin, V.I., Prokop’ev, E.P., Timoshenkov, S.P. et al. Positronics and nanotechnologies: Possibilities of studying nanoobjects in critical engineering materials using positron annihilation spectrometry. Russ Microelectron 38, 418–428 (2009). https://doi.org/10.1134/S1063739709060079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739709060079

PACS

Navigation