Skip to main content
Log in

Numerical Modeling of the Deformation Behavior of Polymer Lattice Structures with a Density Gradient Based on Additive Technologies

  • MECHANICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The mechanical behavior of graded lattice structures whose geometry is created on the basis of the analytical determination of three-dimensional triply periodic minimal surfaces (TPMS) is investigated. Several homogeneous and graded lattice models with different types of representative volume geometry and gradient parameters are considered. The numerical models are validated with data obtained experimentally using the Vic-3D Micro-DIC video system. The results of numerical simulation of the deformation behavior of gradient structures with the Shoen G (gyroid) TPMS geometry under uniaxial compression are presented. The influence of structure parameters and gradient properties on the mechanical behavior is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M. Afshar, A. P. Anaraki, H. Montazerian, and J. Kadkhodapour, “Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures,” J. Mech. Behav. Biomed. Mater. 62, 481–494 (2016). https://doi.org/10.1016/j.jmbbm.2016.05.027

    Article  Google Scholar 

  2. L. G. Bracaglia, B. Smith, E. Watson, N. Arumugasaamy, A. G. Mikos, and J. Fisher, “3D printing for the design and fabrication of polymer-based gradient scaffolds,” Acta Biomater. 56, 3–13 (2017). https://doi.org/10.1016/j.actbio.2017.03.030

    Article  Google Scholar 

  3. S. Pagani, E. Liverani, G. Giavaresi, A. De Luca, C. Belvedere, A. Fortunato, A. Leardini, M. Fini, L. Tomesani, and P. Caravaggi, “Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants,” J. Biomed. Mater. Res., Part B: Appl. Biomater. 109, 2091–2103 (2021). https://doi.org/10.1002/jbm.b.34857

    Article  Google Scholar 

  4. Y. Wang, W. D. Müller, A. Rumjahn, F. Schmidt, and A. D. Schwitalla, “Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters,” J. Mech. Behav. Biomed. Mater. 115, 104250 (2021). https://doi.org/10.1016/j.jmbbm.2020.104250

    Article  Google Scholar 

  5. X. Li, Y. Z. Xiong, H. Zhang, and R. N. Gao, “Development of functionally graded porous titanium/silk fibroin composite scaffold for bone repair,” Mater. Lett. 282, 128670 (2021). https://doi.org/10.1016/j.matlet.2020.128670

    Article  Google Scholar 

  6. M. Zhao, F. Liu, G. Fu, D. Z. Zhang, T. Zhang, and H. Zhou, “Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM,” Mater. 11, 2411 (2018). https://doi.org/10.3390/ma11122411

    Article  Google Scholar 

  7. F. Liu, Z. Mao, P. Zhang, D. Z. Zhang, J. Jiang, and Z. Ma, “Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties,” Mater. Des. 160, 849–860 (2018). https://doi.org/10.1016/j.matdes.2018.09.053

    Article  Google Scholar 

  8. X. Shi, W. Liao, T. Liu, C. Zhang, D. Li, W. Jiang, C. Wang, and F. Ren, “Design optimization of multimorphology surface-based lattice structures with density gradients,” Int. J. Adv. Manuf. Technol. 117, 2013–2028 (2021). https://doi.org/10.1007/s00170-021-07175-3

    Article  Google Scholar 

  9. S. Bargmann, B. Klusemann, J. Markmann, J. E. Schnabel, K. Schneider, C. Soyarslan, and J. Wilmers, “Generation of 3D representative volume elements for heterogeneous materials: A review,” Prog. Mater. Sci. 96, 322–384 (2018). https://doi.org/10.1016/j.pmatsci.2018.02.003

    Article  Google Scholar 

  10. C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, and Y. Shi, “Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants,” J. Mech. Behav. Biomed. Mater. 80, 119–127 (2018). https://doi.org/10.1016/j.jmbbm.2018.01.013

    Article  Google Scholar 

  11. J. L. Ng, C. E. Collins, and M. L. Knothe Tate, “Engineering mechanical gradients in next generation biomaterials — Lessons learned from medical textile design,” Acta Biomater. 56, 14–24 (2017). https://doi.org/10.1016/j.actbio.2017.03.004

    Article  Google Scholar 

  12. X. Y. Zhang, G. Fang, S. Leeflang, A. A. Zadpoor, and J. Zhou, “Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials,” Acta Biomater. 84, 437–452 (2019). https://doi.org/10.1016/j.actbio.2018.12.013

    Article  Google Scholar 

  13. A. Moetazedian, A. Gleadall, X. Han, and V. V. Silberschmidt, “Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications,” J. Mech. Behav. Biomed. Mater. 102, 103510 (2020). https://doi.org/10.1016/j.jmbbm.2019.103510

    Article  Google Scholar 

  14. L. Ruiz-Cantu, A. Gleadall, C. Faris, J. Segal, K. Shakesheff, and J. Yang, “Multi-material 3D bioprinting of porous constructs for cartilage regeneration,” Mater. Sci. Eng. C, Mater. Bio. Appl. 109, 110578 (2020). https://doi.org/10.1016/j.msec.2019.110578

    Article  Google Scholar 

  15. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, and Y. M. Xie, “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials 83, 127–141 (2016). https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  Google Scholar 

  16. Z. Wang, Y. Wang, J. Yan, K. Zhang, F. Lin, L. Xiang, L. Deng, Z. Guan, W. Cui, and H. Zhang, “Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration,” Adv. Drug Delivery Rev. 174, 504–534 (2021). https://doi.org/10.1016/j.addr.2021.05.007

    Article  Google Scholar 

  17. R. Shah, B. Gashi, S. Hoque, M. Marian, and A. Rosenkranz, “Enhancing mechanical and biomedical properties of protheses — Surface and material design,” Surf. Interf. 27, 101498 (2021). https://doi.org/10.1016/j.surfin.2021.101498

    Article  Google Scholar 

  18. A. Entezari, Z. Zhang, A. Sue, G. Sun, X. Huo, C. C. Chang, S. Zhou, M. V. Swain, and Q. Li, “Nondestructive characterization of bone tissue scaffolds for clinical scenarios,” J. Mech. Behav. Biomed. Mater. 89, 150–161 (2019). https://doi.org/10.1016/j.jmbbm.2018.08.034

    Article  Google Scholar 

  19. H. Razi, S. Checa, K. D. Schaser, and G. N. Duda, “Shaping scaffold structures in rapid manufacturing implants: A modeling approach toward mechano-biologically optimized configurations for large bone defect,” J. Biomed. Mater. Res., Part B 100B, 1736–1745 (2012). https://doi.org/10.1002/jbm.b.32740

    Article  Google Scholar 

  20. L. Zhang, B. Song, L. Yang, and Y. Shi, “Tailored mechanical response and mass transport characteristic of selective laser melted porous metallic biomaterials for bone scaffolds,” Acta Biomater. 112, 298–315 (2020). https://doi.org/10.1016/j.actbio.2020.05.038

    Article  Google Scholar 

  21. M. A. Tashkinov, “Multipoint stochastic approach to localization of microscale elastic behavior of random heterogeneous media,” Comput. Struct. 249, 106474 (2021). https://doi.org/10.1016/j.compstruc.2020.106474

    Article  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support from the mega-grant international cooperation program, project no. 075-15-21021-578 of May 31, 2021, hosted by Perm National Research Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Elenskaya, M. A. Tashkinov or V. V. Silberschmidt.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elenskaya, N.V., Tashkinov, M.A. & Silberschmidt, V.V. Numerical Modeling of the Deformation Behavior of Polymer Lattice Structures with a Density Gradient Based on Additive Technologies. Vestnik St.Petersb. Univ.Math. 55, 443–452 (2022). https://doi.org/10.1134/S1063454122040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454122040045

Keywords:

Navigation