Skip to main content
Log in

Impact of Variation in Environmental Parameters on Abundance of Paracalanidae (Calanoida: Copepoda) from the Tropical Coast of India, Bay of Bengal

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Copepods belonging to the family Paracalanidae are dominant in the tropical regions of the oceans. In the present study, zooplankton samples were collected from January to December 2019 at three stations off Marina coast, Chennai, India. Five species of Paracalanidae were reported in the present study, whereas Acrocalanus gracilis was found to be a dominant species throughout the study with a mean abundance of 47.65 ± 8.73 × 103 ind./m3. Overall, the density of Paracalanidae was the highest in January and the lowest in June. Pearson’s correlation and regression analyses were conducted between the density of Paracalanidae and the observed physicochemical parameters of the aquatic environment to emphasize the relationship between them. A high negative correlation coefficient was observed between the Paracalanidae abundance and the water temperature (–0.76) and ammonia content (–0.73), whereas a high positive correlation was observed between the Paracalanidae abundance and the dissolved oxygen (0.75). The regression coefficient (R2) between the Paracalanidae abundance and the water temperature and ammonia content was 0.57 and 0.53, respectively, which indicated a strong negative relationship between the Paracalanidae abundance and the water temperature and ammonia content. However, this study also showed a strong relationship between the Paracalanidae abundance and the water salinity, pH, and nitrate content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Gusmão, L.F.M. and McKinnon, A.D., Acrocalanus gracilis (Copepoda: Calanoida) development and production in the Timor Sea, J. Plankton Res., 2009, vol. 31, pp. 1089–1100.

    Article  Google Scholar 

  2. Kesarkar, K.S. and Anil, A.C., New species of Paracalanidae along the west coast of India: Paracalanus arabiensis, J. Mar. Biol. Assoc. U. K., 2010, vol. 90, pp. 399–408.

    Article  Google Scholar 

  3. Paffenhöfer, G.-A., Food ingestion by the marine planktonic copepod Paracalanus in relation to abundance and size distribution of food, Mar. Biol.,1984, vol. 80, pp. 323–333.

    Article  Google Scholar 

  4. Yoo, K.-I. and Lee, W.C., A planktonic copepod, Paracalanus gracilis Chen & Zhang, new to Korea, Korean J. Environ. Biol., 1994, vol. 12, pp. 87–91.

    Google Scholar 

  5. Sivakumar, K., Nawaz, A., and Saboor, A., Population composition of calanoid copepods of the Chennai coast, Tamil Nadu, Indian J. Geo-Mar. Sci., 2021, vol. 50, pp. 693–700.

    Google Scholar 

  6. Cornils, A. and Blanco-Bercial., L., Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida), Mol. Phylogenet. Evol., 2013, vol. 69, no. 3, pp. 861–872.

    Article  PubMed  Google Scholar 

  7. Razouls, C., Desreumaux, N., Kouwenberg, J., and Bovée, F., Biodiversity of Marine Planktonic Copepods (morphology, geographical distribution and biological data), Sorbonne University, CNRS. http://copepodes.obs-banyuls.fr/en. Cited June 21, 2023.

  8. Bode, M., Hagen, W., Cornils, A., Kaiser, P., and Auel, H., Copepod distribution and biodiversity patterns from the surface to the deep sea along a latitudinal transect in the eastern Atlantic Ocean (24° N to 21° S), Prog. Oceanogr., 2018, vol. 161, pp. 66–77.

    Article  Google Scholar 

  9. Vajravelu, M., Martin, Y., Ayyappan, S., and Mayakrishnan, M., Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India, Oceanologia, 2018, vol. 60, pp. 114–127.

    Article  Google Scholar 

  10. Henry, R., Hino, K., Gentil, J.G., and Tundisi, J.G., Primary production and effects of enrichment with mitrate and phosphate on phytoplankton in the Barra Bonita Reservoir (State of São Paulo, Brazil), Int. Rev. Gesamten Hydrobiol. Hydrogr., 1985, vol. 70, pp. 561–573.

    Article  CAS  Google Scholar 

  11. Umer, K.S., Ebenezer, V., and Subramoniam, T.A., A short-term study on the effect of environmental factor variation on a zooplankton community, Indian J. Geo-Mar. Sci., 2020, vol. 49, pp. 1158–1164.

    Google Scholar 

  12. Eddy, F.B., Ammonia in estuaries and effects on fish, J. Fish Biol., 2005, vol. 67, pp. 1495–1513.

    Article  CAS  Google Scholar 

  13. Buttino, I., The effect of low concentrations of phenol and ammonia on egg production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi, Mar. Biol., 1994, vol. 119, pp. 629–634.

    Article  CAS  Google Scholar 

  14. Kavitha, M., Padmavathy, P., Srinivasan, A., et al., Copepod abundance and diversity from Offshore Region of Tuticorin, South East Coast of India, Int. J. Curr. Microbiol. Appl. Sci., 2018, vol. 7, pp. 2767–2792.

    Article  Google Scholar 

  15. Belcher, R., Macdonald, A.M.G., and Parry, E., On mohr’s method for the determination of chloride, Anal. Chim. Acta, 1957, vol. 16, pp. 524–529.

    Article  CAS  Google Scholar 

  16. Golterman, H.L., The Winkler Determination, in Polarographic Oxygen Sensors: Aquatic and Physiological Applications, Gnaiger, E. and Forstner, H., Eds., Heidelberg: Springer,1983, pp. 2–3.

    Google Scholar 

  17. Wood, E.D., Armstrong, F.A.J., and Richards, F.A., Determination of nitrate in sea water by cadmium-copper reduction to nitrite, J. Mar. Biol. Assoc. U. K., 1967, vol. 47, pp. 23–31.

    Article  CAS  Google Scholar 

  18. Strickland, J. and Parsons, T., A Practical Handbook of Seawater Analysis, Ottawa: Bull. Fish. Res. Board Can., 1972. https://doi.org/10.2307/1979241

  19. Murphy, J. and Riley, J.P., A modified single solution method for the determination of phosphate in natural waters, Anal. Chim. Acta, 1962, vol. 27, pp. 31–36.

    Article  CAS  Google Scholar 

  20. Soloranzo, L., Determination of ammonia in natural waters by the phenohypochlorite method, Limnol. Oceanogr., 1969, vol. 14, pp. 799–801.

    Google Scholar 

  21. Kasturirangan, L.R., A Key for Identification of the Most Common Planktonic Copepod of Indian Coastal Water, New Delhi: Council Sci. Ind. Res., 1963.

    Google Scholar 

  22. Boxshall, G. and Halsey, S., An Introduction to Copepod Diversity, London: Ray Soc., 2004.

    Google Scholar 

  23. Perry, R., Guide to the Common Inshore Marine Plankton of Southern California, UCLA Ocean GLOBE Malibu High Sch., 2010, vol. 2003, pp. 1–22.

    Google Scholar 

  24. Pillai, H., Jayalakshmy, K., Biju, A., et al., A comparative study on mesozooplankton abundance and diversity between a protected and an unprotected coastal area of Andaman Islands, Environ. Monit. Assess., 2014, vol. 186, pp. 3305–3319.

    Article  PubMed  Google Scholar 

  25. Smith, S.L. and Madhupratap, M., Mesozooplankton of the Arabian Sea: Patterns influenced by seasons, upwelling, and oxygen concentrations, Prog. Oceanogr., 2005, vol. 65, nos. 2–4, pp. 214–239.

    Article  Google Scholar 

  26. Drira, Z., Belhassen, M, Ayadi, H., et al., Copepod community structure related to environmental factors from a summer cruise in the Gulf of Gabès (Tunisia, eastern Mediterranean Sea), J. Mar. Biol. Assoc. U. K., 2010, vol. 90, pp. 145–157.

    Article  CAS  Google Scholar 

  27. Sukumaran, M.K., Muthukumaravel, K., Sivakami, R., and Mohideen, K., Seasonal variation in physico-chemical characteristics of Agniar Estuary, Southeast Coast of India, Asia-Pac. J. Res., 2013, vol. 2.

  28. Sridhar, R.T., Thangaradjou, S., Kumar, S., and Kannan, L., Water quality and phytoplankton characteristics in the Palk Bay, Southeast coast of India, J. Environ. Biol., 2006, vol. 27, pp. 561—566.

    CAS  PubMed  Google Scholar 

  29. Song, H., Wignall, P.B., Song, H., Dai, X., and Chu, D., Seawater temperature and dissolved oxygen over the past 500 million years, J. Earth Sci., 2019, vol. 30, pp. 236–243.

    Article  Google Scholar 

  30. Kulkarni, S.J., A review on research and studies on dissolved oxygen and its affecting parameters, Int. J. Res. Rev., 2016, vol. 3, no. 8, pp. 18–22.

    CAS  Google Scholar 

  31. Walczyńska, A. and Sobczyk, Ł., The underestimated role of temperature–oxygen relationship in large-scale studies on size-to-temperature response, Ecol. Evol., 2017, vol. 7, pp. 7434–7441.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chakraborty, A. and Sen, K., Impact of pH and temperature on phase diagrams of different aqueous biphasic systems, J. Chromatogr. A, 2016, vol. 1433, pp. 41–55.

    Article  CAS  PubMed  Google Scholar 

  33. Choi, S.Y., Lee, E.H., Soh, H.Y., and Jang, M.C., Effects of temperature and salinity on egg production, hatching, and mortality rates in Acartia ohtsukai (Copepoda, Calanoida), Front. Mar. Sci., 2011, vol. 8, pp. 1–9.

    Google Scholar 

  34. Milione, M. and Zeng, C., The effects of temperature and salinity on population growth and egg hatching success of the tropical calanoid copepod, Acartia sinjiensis, Aquaculture, 2008, vol. 275, nos. 1–4, pp. 116–123.

    Article  Google Scholar 

  35. Akhtar, N., Sara, H., Faheem, N., et al., Impact of physicochemical parameters of water on population dynamics of copepods from Safari Zoo Lake, Lahore, Pakistan, FUUAST J. Biol., 2011, vol. 11, pp. 75–83.

    Google Scholar 

  36. Jennings, C.D., Greenwood, J.G., and Kay, B.H., Response of Mesocyclops (Cyclopoida: Copepoda) to biological and physicochemical attributes of rainwater tanks, Environ. Entomol., 1994, vol. 23, pp. 479–486.

    Article  Google Scholar 

  37. Lee, H.W., Ban,S., Ikeda,T., and Matsuishi, T., Effect of temperature on development, growth and reproduction in the marine copepod Pseudocalanus newmani at satiating food condition, J. Plankton Res., 2003, vol. 25, pp. 261–271.

    Article  CAS  Google Scholar 

  38. Liao, C.H., Chang, W.J., Lee, M.A., and Lee, K.T., Summer distribution and diversity of copepods in upwelling waters of the southeastern East China Sea, Zool. Stud., 2006, vol. 45, pp. 378–394.

    Google Scholar 

  39. Huntley, M.E. and Lopez, M.D.G., Temperature-dependent production of marine copepods: A global synthesis, Am. Nat., 1992, vol. 140, pp. 201–242.

    Article  CAS  PubMed  Google Scholar 

  40. Tsunashima, A., Itoh, H., and Katano, T., Effects of temperature and phytoplankton community composition on subitaneous and resting egg production rates of Acartia omorii in Tokyo Bay, Sci. Rep., 2021, vol. 11, p. 7959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dahms, H.U., Tseng, L., Hsiao, S., et al., Biodiversity of planktonic copepods in the Lanyang River (Northeastern Taiwan), a typical watershed of Oceania, Zool. Stud., 2012, vol. 51, pp. 160–174.

    Google Scholar 

  42. Chen, Q., Sheng, J., Lin, Q., Gao, Y., and Lv, J., Effect of salinity on reproduction and survival of the copepod Pseudodiaptomus annandalei Sewell, 1919, Aquaculture, 2006, vol. 258, pp. 575–582.

    Article  CAS  Google Scholar 

  43. Nagaraj, M., Combined effects of temperature and salinity on the development of the copepod Eurytemora affinis, Aquaculture, 1992, vol. 103, pp. 65–71.

    Article  Google Scholar 

  44. Lui, N.S.T. and Roels, O.A., Nitrogen metabolism of aquatic organisms. II. The assimilation of nitrate, nitrite, and ammonia by Biddulphia aurita, J. Phycol., 1972, vol. 8, pp. 259–264.

    Article  CAS  Google Scholar 

  45. Dzialowski, A.R., Wang, S.H., Lim, N.C., Spotts, W.W., and Huggins, D.G., Nutrient limitation of phytoplankton growth in central plains reservoirs, USA, J. Plankton Res., 2005, vol. 27, pp. 587–595.

    Article  CAS  Google Scholar 

  46. Rodellas, V., Garcia-Orellana, J., Masqué, P., et al., Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 3926–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Satpathy, K.K., Sahu, G., Mohanty, A.K., et al., Phytoplankton community structure and its variability during southwest to northeast monsoon transition in the coastal waters of Kalpakkam, East coast of India, Int. J. Oceans Oceanogr., 2009, vol. 3, pp. 43–74.

    Google Scholar 

  48. Toetz, D.W., Effects of pH, phosphate and ammonia on the rate of uptake of nitrate and ammonia by freshwater phytoplankton, Hydrobiologia, 1981, vol. 76, pp. 23–26.

    Article  CAS  Google Scholar 

  49. Conde-Porcuna, J.M., Ramos-Rodríguez, E., and Pírez-Martínez, C., Correlations between nutrient concentrations and zooplankton populations in a mesotrophic reservoir, Freshwater Biol., 2002, vol. 47, pp. 1463–1473.

    Article  CAS  Google Scholar 

  50. Tibúrcio, V.G., Arrieira, R.L., Schwind, L.T.F., et al., Effects of nutrients increase on the copepod community of a reservoir using cages, Acta Limnol. Bras., 2015, vol. 27, pp. 265–274.

    Article  Google Scholar 

  51. Jafari, N., Nabavi, S.M., and Akhavan, M., Ecological investigation of zooplankton abundance in the river Haraz, northeast Iran: Impact of environmental variables, Arch. Biol. Sci., 2011, vol. 63, pp. 785–798.

    Article  Google Scholar 

  52. Jepsen, P.M., Andersen, C.V.B., Schjelde, J., and Hansen, B.W., Tolerance of un-ionized ammonia in live feed cultures of the calanoid copepod Acartia tonsa Dana, Aquacult. Res., 2015, vol. 46, pp. 420–431.

    Article  CAS  Google Scholar 

  53. Kennedy, A. J., Biber, T.W., May, L.R., et al., Sensitivity of the marine calanoid copepod Pseudodiaptomus pelagicus to copper, phenanthrene, and ammonia, Environ. Toxicol. Chem., 2019, vol. 38, pp. 1221–1230.

    Article  CAS  PubMed  Google Scholar 

  54. Ben Salem, Z. and Ayadi, H., Biodiversity and spatial distribution of copepods community in the south coast of Sfax city (Tunisia), Reg. Stud. Mar. Sci., 2016, vol. 8, pp. 183–191.

    Google Scholar 

  55. Rouco, M., Branson, O., Lebrato, M., and Iglesias-Rodríguez, M. D., The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios, Front. Microbiol., 2013, vol. 4, p. 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shanmugam, P., Neelamani, S., Ahn, Y.H., et al., Assessment of the levels of coastal marine pollution of Chennai city, Southern India, Water Resour. Manage., 2007, vol. 21, pp. 1187–1206.

    Article  Google Scholar 

  57. Hong, J., Talapatra, S., Katz, J., et al., Algal toxins alter copepod feeding behavior, PLoS One, 2012, vol. 7, p. e36845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nawaz, M.A., Sivakumar, K., Baskar, G., Vijayaraj, R., Diversity rhythm in pontellid copepods (Pontellidae: Copepoda) from the Covelong coast pre- and post-COVID-19 lockdown, Bay of Bengal, Turk. J. Zool., 2023, vol. 47, pp. 71–80. https://doi.org/10.55730/1300-0179.3117

    Article  CAS  Google Scholar 

  59. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological statistics software package for education and data analysis, Palaeontol. Electron., 2001, vol. 4, p. 4.

    Google Scholar 

  60. Love, J., Ravi, S., Maarten, M., et al., JASP: Graphical statistical software for common statistical designs, J. Stat. Software, 2019, vol. 88, pp. 1–17. https://doi.org/10.18637/jss.v088.i02

    Article  Google Scholar 

  61. Sharmila, K.J. and Narayanan, R.M., Assessment of various oceanographic parameters and inter comparison of primary production estimates around Chennai coast – Tamil Nadu, India, Appl. Ocean Res., 2018, vol. 72, pp. 39–50.

    Article  Google Scholar 

  62. Jayaraman, K. and Narayanan, R.M., Oceanic primary production and marine water quality assesment around Chennai coast – Tamilnadu, India, Int. J. Pharma Bio Sci., 2017, vol. 8, no. 3, pp. 247–265. https://doi.org/10.22376/ijpbs.2017.8.3.b247-265

    Article  CAS  Google Scholar 

  63. Adhar, S., Barus, T.A., Nababan, E.S.N., and Wahyuningsih, H., The waters transparency model of Lake Laut Tawar, Aceh, Indonesia, IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 869, p. 012021. https://doi.org/10.1088/1755-1315/869/1/012021

  64. McKinnon, A.D. and Thorrold, S.R., Zooplankton community structure and copepod egg production in coastal waters of the central Great Barrier Reef lagoon, J. Plankt. Res., 1993, vol. 15, no. 12, pp. 1387–1411.https://doi.org/10.1093/plankt/15.12.1387

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors (MAN and SK) would like to thank the Management, Principal, and Head of the Department of Biotechnology at the Karpaga Vinayaga College of Engineering and Technology for providing the necessary resources. The authors (MAN, SK, and BG) would also like to thank the Management, Principal, and Head of the Department of Biotechnology at the St. Joseph’s College of Engineering for their support throughout the study period.

Funding

The authors would like to thank the Government of India’s Ministry of Earth Sciences for providing the financial assistance for the completion of this work (MoES/36/OOIS/Extra/2018).

Author information

Authors and Affiliations

Authors

Contributions

MAN devised the study task, analyzed the samples, carried out the research work, and drafted the manuscript. MAN and SK collected zooplankton samples, identified the species, and statistically interpreted the results. SK acquired funding for the research work. BG reviewed and finalized the manuscript. BG and SK supervised the entire work.

Corresponding author

Correspondence to Baskar Gurunathan.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, M.A., Kandhasamy, S. & Gurunathan, B. Impact of Variation in Environmental Parameters on Abundance of Paracalanidae (Calanoida: Copepoda) from the Tropical Coast of India, Bay of Bengal. Russ J Mar Biol 49, 391–400 (2023). https://doi.org/10.1134/S1063074023050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074023050073

Keywords:

Navigation