Skip to main content
Log in

Changes of the morphometric indices and fractal dimension of the spinal cord neurons during ontogenesis of the cherry salmon Oncorhynchus masou

  • Comparative Morphology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

For the quantitative characteristics of the morphology of two groups of spinal cord neurons in the cherry salmon at the early stages of ontogenesis, the fractal dimension and some more traditional morphometric indices, such as the total length of neuronal branches, the number of terminal branches and branchpoints, and the cell area, are determined. The values of the morphometric indices and the fractal dimension of the bivariate neuronal pattern are shown to increase in the course of ontogenesis from the first to the second year of fish life. The correlation between the main morphometric value and the fractal dimension is found, and their correspondence to the morphometric modifications of the dendrite tree in the neurons investigated during ontogenesis is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titlyanov, E.A., Titlyanova, T.V., Yamazato, K., Van Woesik, R., Photo-Acclimation of the Hermatypic Coral Stylophora pistillata While Subjected to Either Starvation or Food Provisioning, J. Exp. Mar. Biol. Ecol. 2001a, vol. 257, pp. 163–181.

    Article  PubMed  Google Scholar 

  2. Aizeman, C.D., Huang, E.J., Linden, D.J., Morphological Correlates of Intrinsic Electrical Excitability in Neurons of the Deep Cerebellar Nuclei, J. Neurophysiol., 2003, vol. 89, no. 4, pp. 1738–1747.

    Google Scholar 

  3. Albright, T.D., Jessell, T.M., Kandel, E.R., Posner, M.I., Neural Science: a Century of Progress and the Mysteries that Remain, Cell, 2000, vol. 25, Rev. Suppl., pp. S1–S55.

    Article  Google Scholar 

  4. Andreeva, N.G., Obuhov, D.K., Evolucionnaya morphologiya nervnoi systemy (Evolutionary Morphology of Neural System), St. Petersburg: Lan’, 1999, 384 p.

    Google Scholar 

  5. Cohen A.H., Ermentrout, G.B., Kiemel, T., et al., Modelling of Intersegmental Coordination in the Lamprey Central Pattern Generator of Locomotion, Trends Neurosci., 1992, vol. 15, pp. 434–438.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen, A.H., Wallen, P., The Neuronal Correlate of Locomotion in Fish. “Fictive Swimming” Induced in an in vitro Preparation of The Lamprey Spinal Cord, Exp. Brain Res., 1980, vol. 41, pp. 11–18.

    Article  PubMed  CAS  Google Scholar 

  7. Ekeberg, O., Wallen, P., Lansner, A., et al. A Computer Based Model for Realistic Stimulation of Neural Networks. I. The Single Neuron and Synaptic Interaction, Biol. Cybern., 1991, vol. 65, pp. 81–90.

    Article  PubMed  CAS  Google Scholar 

  8. Feder, E. Fractaly (Fractals), Moscow, Mir, 1991.

    Google Scholar 

  9. Fernandez, E., Bolea, J.A., Ortega, G., Louis, E., Are Neurons Multifractals?, J. Neurosci. Meth., 1999, vol. 89, pp. 151–157.

    Article  CAS  Google Scholar 

  10. Finger, O.A., Ascending Spinal Systems in the Fish Prionotus carolinus, J. Comp. Neuol., 2000, vol. 422, pp. 106–122.

    Article  CAS  Google Scholar 

  11. Funakoshi, K., Katoda, O., Atobe, Y., et al. Differential Innervation of the Goldfish Tonic Red Muscles and Twitch White Muscles by Neuropeptide-Immunoreactive Motoneurons, Brain Res. Bull., 2002, vol. 52, no. 6, pp. 547–552.

    Article  Google Scholar 

  12. Gladkovitch, N.G., Razvitie dendritov v norme I v usloviyah deafferentacii, (Development of Dendrites Under Condition of Deafferentation), M. Nauka, 1985, pp. 77–126.

  13. Goldberger, A.L., Fractal Variability Versus Pathological Periodicity: Complexity and Stereotypy in Disease, Perspect. Biol. Med., 1997, vol. 40, no. 4, pp. 543–561.

    PubMed  CAS  Google Scholar 

  14. Goldberger, A.L., Rigney, D.R., West, B.J., Chaos and Fractals in Human Physiology, Sci. Amer., 1990, vol. 162, no. 2, pp. 43–49.

    Google Scholar 

  15. Grillner, S., Wallen, P., Cellular Bases of a Vertebrate Locomotor System—Steering, Intersegmental and Segmental Coordination and Sensory Control, Brain Res. Rev., 2002, vol. 40, pp. 92–106.

    Article  PubMed  Google Scholar 

  16. Hellgren-Kotaleski, J., Grillner, S., Lansner, A., Neural Mechanisms Potentially Contributing to the Intersegmental Phase Lag In Lamprey. I. Segmental Oscillations Dependent on Reciprocal Inhibition, Biol. Cybern., 1999, vol. 81, pp. 299–315.

    Article  Google Scholar 

  17. Horch, H.W., Krßttgen, A., Portbury, S.D., Katz, L.C., Destabilization of Cortical Dendrites and Spines by BDNF, Neuron, 1999, vol. 23, no. 2, pp. 353–364.

    Article  PubMed  CAS  Google Scholar 

  18. Isaeva, V.V., Chernyshev, A.V., Shkuratov, D.Yu., Fractaly i chaos v biologicheskom morfogenese (Fractals and Chaos in Biological Morphogenesis), Vladivostok Dal’nauka, 2004a.

    Google Scholar 

  19. Isaeva, V.V., Puschina, E.V., Karetin, Yu.A., Kvazifractalnaya organizaciya neyronov golovnogo mozga ryb (The Quasi-Fractal Structure of Fish Brain Neurons), Biol. Morya, 2004b, vol. 30, no 2, pp. 143–151.

    Google Scholar 

  20. Jelinek, H.F., Fernandez, E., Neurons and Fractals: How Reliable and Useful are Calculations of Fractal Dimensions?, J. Neurosci. Meth., 1998, vol. 81, pp. 9–18.

    Article  CAS  Google Scholar 

  21. Jelinek, H.F., Spence, I., Categorization of Physiologically Characterized non-α/non-β Cat Retinal Ganglion Cells Using Fractal Geometry, Fractals, 1997, vol. 5, no. 4, pp. 673–684.

    Google Scholar 

  22. Kniffki, K.-D., Pawlak, M., Vahle-Hinz, C., Fractal Dimensions and Dendritic Branching of Neurons in the Somatosensory Thalamus, Fractals In Biology And Medicine, Basel: Birkhäuser, 1994, pp. 221–229.

    Google Scholar 

  23. Leontovitch, O.A., Neironnaya organizaciya podkorkovyh obrazovanii perednego mozga (Neuronal Organization of Subcortical Formations in Forebrain), I. Medicina, 1978.

  24. Mandelbrot, A.A., The Fractal Geometry of Nature, New York: Freeman, 1983.

    Google Scholar 

  25. Maksimova, A.V. Osnovnye etapy differencirovki nervnyh kletok (Main Differention Stages of Neural Cells), Neuroontogenez, I. Nauka, 1985, pp. 6–76.

  26. Neale, E.A., Bowers, L.M., Smith, T.G.Jr., Early Dendrite Development in Spinal Cord Cell Cultures: a Quantitative Study, J. Neurosci. Res., 1993, vol. 34, pp. 54–66.

    Article  PubMed  CAS  Google Scholar 

  27. Savel’ev, S.V., Sravnitel’naya anatomiya nervnoi systemy pozvonochnyh (Comparative Anatomy of Vertebrate Neural System), I. GEOTAR-MED, 2001.

  28. Schiff, S.J., Jerger, K., Duong, D.H., et al. Controlling Chaos in the Brain, Nature, 1994, vol. 370, pp. 615–620.

    Article  PubMed  CAS  Google Scholar 

  29. Sholl, D.A., Dendritic Organization in the Neurons of the Visual and Motor Cortices of the Cat, J. Anat., 1953, vol. 87, pp. 387–406.

    PubMed  CAS  Google Scholar 

  30. Smith, T.G., Neale, E.A., A Fractal Analysis of Morphological Differentiation of Spinal Cord Neurons in Cell Culture, Fractals in Biology and Medicine, Basel: Birkh?user, 1994, pp. 210–220.

    Google Scholar 

  31. Smith, T.G., Lange, G.D., Fractal Studies of Neuronal and Glial Cellular Morphology, Fractal Geometry in Biological Systems: an Analytical Approach, Boca Raton: CRC Press, 1996, pp. 173–186.

    Google Scholar 

  32. Smith, T.G., Lange, G.D., Marks, W.B., Fractal Methods and Results in Cellular Biology—Dimensions, Lacunarity and Multifractals, J. Neurosci. Meth., 1996, vol. 69, pp. 123–136.

    Article  Google Scholar 

  33. Stanley, H.E., Learning Concepts of Fractals and Probability by “Doing Science”, Physica D, 1989, vol. 38, nos. 1–3, pp. 330–340.

    Article  Google Scholar 

  34. Waliszewski, P., Konarski, J., Neuronal Differentiation and Synapse Formation Occur in Space and Time With Fractal Dimension, Synapse, 2002, vol. 43, pp. 252–258.

    Article  PubMed  CAS  Google Scholar 

  35. Wingate, R.J.T., Fitzgibbon, O., Thompson, I.D., Lucifer Yellow, Retrograde Tracers, and Fractal Analysis Characterise Adult Ferret Retinal Ganglion Cells, J. Comp. Neurol., 1992, vol. 323, pp. 449–474.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Isaeva, E.V. Puschina, Yu.A. Karetin, 2006, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaeva, V.V., Puschina, E.V. & Karetin, Y.A. Changes of the morphometric indices and fractal dimension of the spinal cord neurons during ontogenesis of the cherry salmon Oncorhynchus masou . Russ J Mar Biol 32, 106–114 (2006). https://doi.org/10.1134/S1063074006020052

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074006020052

Key words

Navigation