Skip to main content
Log in

Efficiency of Sub-THz-to-DC Energy Conversion by Means of a Silicon Detector

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The efficiency η of sub-THz-to-DC energy conversion of a silicon-based plasmonic detector was studied. The dependence of the detector output signal on the incident radiation power was measured. It was shown that, in the linear-power region, the efficiency η increases with increasing power and saturates sublinearly. The maximum achieved values of η were 0.4% at a radiation frequency of 97 GHz. The measurements were carried out both at room temperature and when the detector was cooled to liquid nitrogen temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Baydin, A., Makihara, T., Peraca, N.M., and Kono, J., Front. Optoelectron., 2021, vol. 14, p. 110.

    Article  Google Scholar 

  2. Wang, P.L., Lou, J., Fang, G.Y., and Chang, C., IEEE Trans. Microwave Theory Tech., 2022, vol. 70, no. 11, p. 5117.

    Article  ADS  Google Scholar 

  3. Pearson, J.C., Drouin, B.J., and Yu, S., IEEE J. Microwaves, 2021, vol. 1, no. 1, p. 43.

    Article  Google Scholar 

  4. Chen, Z., Ma, X., Zhang, B., et al., China Commun., 2019, vol. 16, no. 2, p. 1.

    Article  ADS  Google Scholar 

  5. Yang, X., Zhao, X., Yang, K., et al., Trends Biotechnol., 2016, vol. 34, no. 10, p. 810.

    Article  Google Scholar 

  6. Tzydynzhapov, G., Gusikhin, P., Muravev, V., et al., J. Infrared Millimeter Terahertz Waves, 2020, vol. 41, no. 6, p. 632.

    Article  Google Scholar 

  7. Shchepetilnikov, A.V., Gusikhin, P.A., Muravev, V.M., et al., Appl. Opt., 2021, vol. 60, no. 33, p. 10448.

    Article  ADS  Google Scholar 

  8. Shinohara, N., Recent Wireless Power Transfer Technologies via Radio Waves, Gistrup: River, 2018.

  9. Mizojiri, S. and Shimamura, K., Proc. IEEE Asia-Pacific Microwave Conference, Singapore, 2019, p. 705.

  10. Citroni, R., Di Paolo, F., and Livreri, P., Nanomaterials, 2022, vol. 12, no. 14, p. 2479.

    Article  Google Scholar 

  11. Joseph, S.D., Hsush, H.S., and Huang, Y., Proc. IEEE Int. Symp. Radio-Frequency Integration Technology, Hualien, Taiwan, 2021, p. 1.

  12. Muravev, V.M., Gusikhin, P.A., Andreev, I.V., and Kukushkin, I.V., Phys. Rev. Lett., 2015, vol. 114, no. 10, p. 106805.

    Article  ADS  Google Scholar 

  13. Muravev, V.M., Gusikhin, P.A., Zarezin, A.M., et al., Phys. Rev. B, 2019, vol. 99, no. 24, p. 241406.

    Article  ADS  Google Scholar 

  14. Muravev, V.M. and Kukushkin, I.V., Appl. Phys. Lett., 2012, vol. 100, no. 8, p. 082102.

    Article  ADS  Google Scholar 

  15. Muravev, V.M., Solov’ev, V.V., Fortunatov, A.A., et al., JETP Lett., 2016, vol. 103, no. 12, p. 792.

    Article  ADS  Google Scholar 

  16. Shchepetilnikov, A.V., Kaysin, V.D., Gusikhin, P.A., et al., Opt. Quantum Electron., 2019, vol. 51, no. 12, p. 376.

    Article  Google Scholar 

  17. Shchepetilnikov, A.V., Kukushkin, I.V., Muravev, V.M., et al., J. Infrared Millimeter Terahertz Waves, 2020, vol. 41, no. 6, p. 655.

    Article  Google Scholar 

  18. Khisameeva, A.R., Shchepetilnikov, A.V., Fedotova, Ya.V., et al., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 2, p. 145.

    Article  Google Scholar 

  19. Chiou, H.K. and Chen, I.S., IEEE Trans. Microwave Theory Tech., 2010, vol. 58, no. 12, p. 3598.

    ADS  Google Scholar 

  20. Weissman, N., Jameson, S., and Socher, E., Proc. IEEE MTT-S Int. Microwave Symp., Tampa, 2014, p. 1.

  21. Kapilevich, B., Shashkin, V., Litvak, B., et al., IEEE Microwave Wireless Compon. Lett., 2016, vol. 26, no. 8, p. 637.

    Article  Google Scholar 

  22. Shaulov, E., Jameson, S., and Socher, E., Proc. IEEE MTT-S Int. Microwave Symp., Honolulu, 2017, p. 307.

  23. He, P. and Zhao, D.A., Proc. IEEE MTT-S Int. Microwave Symp., Boston, 2019, p. 634.

  24. Wentzel, A., Yacoub, H., Johansen, T.K., et al., Proc. 17th EuMIC, Milan, 2022, p. 208.

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 19-72-30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shchepetilnikov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchepetilnikov, A., Khisameeva, A., Fedotova, Y.V. et al. Efficiency of Sub-THz-to-DC Energy Conversion by Means of a Silicon Detector. Bull. Russ. Acad. Sci. Phys. 88, 152–155 (2024). https://doi.org/10.1134/S1062873823705135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823705135

Navigation