Skip to main content
Log in

Numerical Analysis of Runaway Electron Beam Focusing with a Homogeneous Longitudinal Magnetic Field

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Using a developed numerical 3D Monte Carlo model, the dependence of the “runaway” electron beam radius on the induction of the guiding magnetic field was studied. It was shown that, besides the magnitude of the magnetic field induction, the beam radius was affected by the point of its generation in the near-cathode region and the approximation of the differential cross section for high-energy electron scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Wilson, C.T.R., Math. Proc. Cambridge Philos. Soc., 1925, vol. 22, no. 4, p. 534. https://doi.org/10.1017/S0305004100003236

    Article  ADS  CAS  Google Scholar 

  2. Babich, L.P., High-Energy Phenomena in Electric Discharges in Dense Gases, Arlington, TX: Futurepast, 2003.

    Google Scholar 

  3. Dreicer, H., Phys. Rev., 1959, vol. 115, no. 2, p. 238. https://doi.org/10.1103/PhysRev.115.238

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Dreicer, H., Phys. Rev., 1960, vol. 117, no. 2, p. 329. https://doi.org/10.1103/PhysRev.117.329

    Article  ADS  MathSciNet  Google Scholar 

  5. Gurevich, A.V., and Zybin, K.P., Phys.—Usp., 2001, vol. 44, no. 11, p. 1119. https://doi.org/10.1070/PU2001v044n11ABEH000939

    Article  ADS  Google Scholar 

  6. Mesyats, G.A., Yalandin, M.I., Reutova, A.G., Sharypov, K.A., Shpak, V.G., and Shunailov, S.A., Plasma Phys. Rep., 2012, vol. 38, p. 29. https://doi.org/10.1134/S1063780X11110055

    Article  ADS  CAS  Google Scholar 

  7. Mesyats, G.A. and Yalandin, M.I., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 6, p. 785. https://doi.org/10.1109/TPS.2009.2012428

    Article  ADS  CAS  Google Scholar 

  8. Yalandin, M.I., Mesyats, G.A., Reutova, A.G., et al., Tech. Phys. Lett., 2011, vol. 37, no. 4, p. 37. https://doi.org/10.1134/S1063785011040298

    Article  CAS  Google Scholar 

  9. Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I., and Balzovsky, E.V., Rev. Sci. Instrum., 2012, vol. 83, no. 8, p. 086106. https://doi.org/10.1016/j.mre.2016.10.004

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Mesyats, G.A., Yalandin, M.I., Zubarev, N.M., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ulmaskulov, M.R., Zubareva, O.V., Kozyrev, A.V., and Semeniuk, N.S., Appl. Phys. Lett., 2020, vol. 116, p. 063501. https://doi.org/10.1063/1.5143486

    Article  ADS  CAS  Google Scholar 

  11. Tarasenko, V.F., Lomaev, M.I., Beloplotov, D.V., and Sorokin, D.A., High Voltage, 2016, vol. 1, no. 4, p. 181. https://doi.org/10.1049/hve.2016.0052

    Article  Google Scholar 

  12. Kozyrev, A.V., Kozhevnikov, V.Y., and Semeniuk, N.S., EPJ Web Conf., 2018, vol. 167, p. 01005. https://doi.org/10.1051/epjconf/201816701005

  13. Babich, L.P. and Loiko, T.V., JETP Lett., 2015, vol. 101, no. 11, p. 735. https://doi.org/10.1134/S002136401511003X

    Article  ADS  CAS  Google Scholar 

  14. Mesyats, G.A. and Yalandin, M.I., Phys.—Usp., 2019, vol. 62, p. 699. https://doi.org/10.3367/UFNr.2018.06.038354

    Article  ADS  CAS  Google Scholar 

  15. Kostyria, I.D., Orlovsky, V.M., Tarasenko, V.F., et al., Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, no. 11, p. 19. https://www.elibrary.ru/item.asp?id=20338224

  16. Mesyats, G.A., Osipenko, E.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., and Zubarev, N.M., IEEE Electron Device Lett., 2022, vol. 43, no. 4, p. 627. https://doi.org/10.1109/LED.2022.3155173

    Article  ADS  CAS  Google Scholar 

  17. Mamontov, Y.I. and Lisenkov, V.V., J. Phys.: Conf. Ser., 2021, vol. 2064, no. 1, p. 012020. https://doi.org/10.1088/1742-6596/2064/1/012020

    Article  Google Scholar 

  18. Mamontov, Y.I., Zubarev, N.M., and Uimanov, I.V., IEEE Trans. Plasma Sci., 2021, vol. 49, no. 9, p. 2589. https://doi.org/10.1109/TPS.2021.3082693

    Article  ADS  Google Scholar 

  19. Lin, S.L. and Bardsley, J.N., Comput. Phys. Commun., 1978, vol. 15, nos. 3–4, p. 161. https://doi.org/10.1016/0010-4655(78)90090-5

    Article  ADS  CAS  Google Scholar 

  20. Itikawa, Y., J. Phys. Chem. Ref. Data, 2006, vol. 35, no. 1, p. 31. https://doi.org/10.1063/1.1937426

    Article  ADS  CAS  Google Scholar 

  21. Shyn, T.W., Stolarski, R.S., and Carignan, G.R., Phys. Rev. A, 1972, vol. 6, no. 3, p. 1002. https://doi.org/10.1103/PhysRevA.6.1002

    Article  ADS  CAS  Google Scholar 

  22. DuBois, R.D. and Rudd, M.E., J. Phys. B: Atom. Mol. Phys., 1976, vol. 9, no. 15, p. 2657. https://doi.org/10.1088/0022-3700/9/15/016

  23. Phelps, A.V. and Pitchford, L.C., Phys. Rev. A, 1985 vol. 31, no. 5, p. 2932. https://doi.org/10.1103/PhysRevA.31.2932

    Article  ADS  CAS  Google Scholar 

  24. Opal, C.B., Peterson, W.K., and Beaty, E.C., J. Chem. Phys., 1971, vol. 55, no. 8, p. 4100. https://doi.org/10.1063/1.1676707

    Article  ADS  CAS  Google Scholar 

  25. Kolchuzhkin, A.M. and Uchaikin, V.V., Vvedenie v teoriyu stolknovenii (Introduction into the Collision Theory) Tomsk: Tomsk. Gos. Univ., 1979.

  26. Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Dolgoprudny: Intellekt, 2009.

  27. Moss, G.D., Pasko, V.P., Liu, N., and Veronis, G., J. Geophys. Res., 2006, vol. 111, no. A2, p. A02307. https://doi.org/10.1029/2005JA011350

    Article  ADS  CAS  Google Scholar 

  28. Zubarev, N.M., Yalandin, M.I., Mesyats, G.A., Barengolts, S.A., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., and Zubareva, O.V., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 284003. https://doi.org/10.1088/1361-6463/aac90a

    Article  CAS  Google Scholar 

  29. Gashkov, M.A., Zubarev, N.M., Zubareva, O.V., Mesyats, G.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., and Yalandin, M.I., JETP Lett., 2021, vol. 113, no. 6, p. 370. https://doi.org/10.1134/S0021364021060059

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation under grant no. 23-19-00053 (https:// rscf.ru/project/23-19-00053/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Mamontov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamontov, Y.I., Zubarev, N.M. & Uimanov, I.V. Numerical Analysis of Runaway Electron Beam Focusing with a Homogeneous Longitudinal Magnetic Field. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S194–S201 (2023). https://doi.org/10.1134/S1062873823704609

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704609

Keywords:

Navigation