Skip to main content
Log in

Physical Modeling of Hydraulic Fracturing in Branched Borehole in Manmade Block

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

Physical modeling of hydraulic fracturing is carried out in cubic blocks with an edge length of 200 mm, made of sand concrete mixed with coal fraction, in the nonuniform stress field. A fracture was created in a vertical branched hole. Computer tomography enabled studying the stress raiser at the mother and daughter hole juncture, the actual diameter of the borehole, the drilling-induced fracturing, the sizes of pores formed in consolidation of the manmade blocks, and the trajectories of the created fractures. It is found how the problem geometry and the compressive stresses affect the direction of the created fracture growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Lekontsev, YuM., Sazhin, PV., and Novik, AV., Systematization of Tools to Create Initiation Cuts in Holes Drilled in Surrounding Rocks in Coal Mines, Ugol’, 2020, no. 12, pp. 4–6.

  2. Sun, Y., Fu Y., and Wang, T., Field Application of Directional Hydraulic Fracturing Technology for Controlling Thick Hard Roof: A Case Study, Arab. J. Geosci., 2021, vol. 14, no. 438, pp 1–15.

    Google Scholar 

  3. Zhang F., Wang X., Bai J., Wu W., Wu B., and Wang G. Fixed-Length Roof Cutting with Vertical Hydraulic Fracture Based on the Stress Shadow Effect: A Case Study, Int. J. Min. Sci. Technol., 2022, vol. 32, no. 2, pp 295–308.

    Article  Google Scholar 

  4. Cha, M., Alqahtani, N.B., Yin, X., Kneafsey, T.J., Yao, B., and Wu, Y.S., Laboratory System for Studying Cryogenic Thermal Rock Fracturing for Well Stimulation, J. Pet. Sci. Eng., 2017, vol. 156, pp. 780–789.

    Article  Google Scholar 

  5. Huang Z., Zhang S., Yang R., Wu X., Li R., Zhang H., and Hung P. A review of Liquid Nitrogen Fracturing Technology, Fuel, 2020, vol. 266 117040.

    Article  Google Scholar 

  6. Chen, J., Li, X., Cao, H., and Huang, L., Experimental Investigation of the Influence of Pulsating Hydraulic Fracturing on Pre-Existing Fractures Propagation in Coal, J. Pet. Sci. Eng., 2020, vol. 189, 107040.

    Article  Google Scholar 

  7. Zhao, X., Huang, B., and Xu, J., Experimental Investigation on the Characteristics of Fractures Initiation and Propagation for gas Fracturing by Using Air as Fracturing Fluid under True Triaxial Stresses, Fuel, 2019, vol. 236, pp. 1496–1504.

    Article  Google Scholar 

  8. Kalam S., Afagwu C., Al Jaberi J., Siddig O.M., Tariq Z., Mahmoud M., and Abdulraheem A. A Review on Non-Aqueous Fracturing Techniques in Unconventional Reservoirs, J. Nat. Gas Sci. Eng, 2021, vol. 95 104223.

    Article  Google Scholar 

  9. Ishida, T., Chen, Q., Mizuta, Y., and Roegiers, J.C., Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism, J. Energy Resour. Technol., 2004, vol. 126, no. 3, pp. 190–200.

    Article  Google Scholar 

  10. Zheng K., Liu Y., Zhang T., and Zhu J. Mining-Induced Stress Control by Advanced Hydraulic Fracking under a Thick Hard Roof for Top Coal Caving Method: A Case Study in the Shendong Mining Area, China, Miner, 2021, vol. 11, 1405.

    Article  Google Scholar 

  11. Pavlov V.A., Serdyukov S.V., Martynyuk P.A., and Patutin A.V. Optimization of Borehole-Jack Fracturing Technique for In Situ Stress Measurement, Int J Geotech Eng, 2019, vol. 13, no. 5, pp 451–457.

    Article  Google Scholar 

  12. Ge Z., Cao S., Lu Y., and Gao F. Fracture Mechanism and Damage Characteristics of Coal Subjected to a Water Jet under Different Triaxial Stress Conditions, J. Pet. Sci. Eng., 2022, vol. 208 109157.

    Article  Google Scholar 

  13. Fu, H., Zhang, F., Weng, D., Liu, Y. et al., The Simulation Method Research of Hydraulic Fracture Initiation with Perforations, Proceedings of IFEDC 2018, Springer Series in Geomechanics and Geoengineering, 2018, pp. 1229–1240.

  14. Lu W. and He C. Numerical Simulation of the Fracture Propagation of Linear Collaborative Directional Hydraulic Fracturing Controlled by Pre-Slotted Guide and Fracturing Boreholes, Eng. Fract. Mech., 2020, vol. 235 107128.

    Article  Google Scholar 

  15. Cheng Y., Lu Y., Ge Z., Cheng L., Zheng J., and Zhang W. Experimental Study on Crack Propagation Control and Mechanism Analysis of Directional Hydraulic Fracturing, Fuel, 2018, vol. 218, pp 316–324.

    Article  Google Scholar 

  16. Karasev, YuG. and Bakka, NG., Prirodnyi kamen’. Dobycha blochnogo i stenovogo kamnya (Natural Stone. Dimensional and Building Stone Production), Saint-Petersburg: SPbGI, 1997.

    Google Scholar 

  17. Kyu, N.G., Novik, A.V., Simonov, D.S., and Freidin, A.M., RF patent no. 2186969 Byull. Izobret, 2002, no. 22.

  18. Patutin, A.V., Azarov, A.V., Rybalkin, L.A., Drobchik, A.N., and Serdyukov, S.V., Stable Created Fracture Growth between Two Parallel Boreholes, Journal of Mining Science, 2022, vol. 58, no. 2, pp. 202–211.

    Article  Google Scholar 

  19. Patutin A.V., Martynyuk P.A., and Serdyukov S.V., Numerical Studies of Coal Bed Fracturing for Effective Methane Drainage, J. Siberian Federal University, Eng. and Technol., 2013, vol. 6, no. 1, pp 75–82.

    Google Scholar 

  20. Serdyukov, S.V., Patutin, A.V., Azarov, A.V., Rybalkin, L.A., and Shilova, T.V., RF patent no. 2730688, Byull. Izobert, 2020, no. 24.

  21. Azarov, A.V., Patutin, A.V., and Serdyukov, S.V., Shapes of Hydraulic Fractures in the Vicinity of Borehole-and-Branch Hole Junction Journal of Mining Science, 2022, vol. 58, no. 5, pp. 741–753.

    Article  Google Scholar 

  22. Zuo S., Ge Z., Deng K., Zheng J., and Wang H., Fracture Initiation Pressure and Failure Modes of TreeType Hydraulic Fracturing in Gas-Bearing Coal Seams, J. Nat. Gas Sci. Eng., 2020, vol 77 103260.

    Article  Google Scholar 

  23. Rubtsova, E.V., Three Axial Independent Loading Testing Machine for Physical Simulation of the Hydraulic Fracturing Method of Stress Measurement, Inter-Expo Geo-Sibir Proc, 2015, vol. 2, no. 3, pp. 211–215.

    Google Scholar 

  24. Rubtsova, EV. and Skulkin, AA., Physical Simulation of the Hydraulic Fracturing Method of Stress Measurement in Sample Models in Nonuniform Loading, Probl. Nedropol’z, 2017, no. 2 (3), pp. 42–46.

  25. Leontiev A. and Rubtsova E. Analysis of Crack Formation in Model Specimens during Hydraulic Fracturing in Holes, Trigger Effects in Geosystems: The 5th Int Conf, 2019, pp 247–256.

  26. Krivoshchekov, S.N. and Kochenv, A.A., Practice of Using Xray Computer Tomography in Studies of Rock Properties, Vestn. PNIPU. Geolog. Neftegaz. i Gornoe Delo, 2013, vol. 12, no. 6, pp. 32–42.

    Google Scholar 

  27. Guo T., Zhang S., Qu Z., Zhou T., Xiao Y., and Gao J. Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume, Fuel, 2014, vol. 128, pp. 373–380.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Patutin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 2, pp. 12-20. https://doi.org/10.15372/FTPRPI20230202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patutin, A.V., Skulkin, A.A. & Prasolova, V.S. Physical Modeling of Hydraulic Fracturing in Branched Borehole in Manmade Block. J Min Sci 59, 191–198 (2023). https://doi.org/10.1134/S1062739123020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123020023

Keywords

Navigation