Skip to main content
Log in

Floatability of Low-Oxidizable Molybdenum and Antimony Sulfides in Controlled Oxidation–Reduction Conditions

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The monomineral extraction of molybdenite and stibnite is tested and analyzed using non-frothing flotation, adsorption, IR spectroscopy, multiple frustrated total internal reflection and potentiometric measurements. The ionized sulfhydryl collectors tested at concentrations of 10-4 mole/l in a pH range of 2–12 include butyl xanthate, diisobutyl dithiophosphate, diisobutyl dithiophosphinate and sodium diethyldithiocarbamate. The test nonionized collectors are diesel fuel and O-isopropylNmethyl thionocarbamate. Molybdenite shows higher floatability than stibnite in application of individual collectors in a pH range of 4.5–8.0. Stibnite is better floatable with diisobutyl dithiophosphate, while molybdenite flotation is more active with diesel fuel. The general critical concentration found for the modifiers H2O2 and Na2S2O3 is \(4.4\cdot 10^{-3}\) mole/l—the flotation activity of molybdenite and stibnite is minimal at this concentration of the agents. Different sorption forms of the ionized sulfhydryl collectors are proved by the multiple frustrated total internal reflection infrared spectroscopy. Anisotropism of mineral electrodes Sb2S3 and MoS2 made along and across the crystal lattice cleavage is experimentally confirmed. The ratio rating of grains of low-oxidizable sulfides, broken along the cleavage or in other direction relative to the cleavage, can modify the process properties of molybdenite and stibnite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. http://publication.pravo.gov.ru/Document/View/0001202208310002. Application date 17.11.2022.

  2. Boyarko, G.Yu. and Khat’kov, V.Yu., The Current Condition of the Molybdenum Industry in Russia, Izv. TPU. Inzhiniring resursov, 2021, vol. 332, no. 2, pp. 73–86.

    Google Scholar 

  3. Khat’kov, V.Yu., Boyarko, G.Yu., Bolsunovskaya, L.M., Dibrov, A.M., and Tkachev, E.V., Overview of the Condition of the Antimony Industry in Russia, Izv. TPU. Inzhiniring resursov, 2016, vol. 333, no. 2, pp. 153–163.

    Google Scholar 

  4. Castro, S., Lopez-Valdivieso, A., and Laskowski, J.S., Review of the Flotation of Molybdenite. Part I: Surface Properties and Floatability, Int. J. Mineral Proc., 2016, vol. 148, pp. 48–58.

    Article  Google Scholar 

  5. Yi, G., Macha, E., Dyke, J.V., Macha, R.E., McKay, T., and Free, M.L., Recent Progress on Research of Molybdenite Flotation: A Review, Advances Colloid Interface Sci., 2021, vol. 295. — 102466.

    Article  Google Scholar 

  6. Komiyama, M., Kiyohara, K., Li, Ya., Fujikawa, T., Ebihara, T., Kubota, T., and Okamoto, Ya., Crater Structures on a Molybdenite Basal Plane Observed by Ultra-High Vacuum Scanning Tunneling Microscopy and its Implication to Hydrotreating, J. Molecular Catalysis A: Chemical, 2004, vol. 215, no. 1–2, pp. 143–147.

    Article  Google Scholar 

  7. Sorokin, M.M., Flotatsiya: modifikatory. Fizicheskie osnovy. Praktika (Flotation: Modifiers. Physical Bases. Practice), Moscow: MISiS, 2016.

    Google Scholar 

  8. Ramos, O., Castro, S., and Laskowski, J.S., Copper–Molybdenum Ores Flotation in Sea Water: Floatability and Frothability, Miner. Eng., 2013, vol. 53, pp. 108–112.

    Article  Google Scholar 

  9. Zhang, Q., Zhu, H., Yang, B., Jia, F., Yan, H., Zeng, M., and Qu, H., Effect of Pb2+ on the Flotation of Molybdenite in the Presence of Sulfide Ion, Results in Physics, 2019, vol. 14. — 102361.

    Article  Google Scholar 

  10. Yang, B., Wang, D., Wang, T., Zhang, H., Jia, F., and Song, S., Effect of Cu2+ and Fe3+ on the Depression of Molybdenite in Flotation, Miner. Eng., 2019, vol. 130, pp. 101–109.

    Article  Google Scholar 

  11. Zhu, H., Li, Yu., Lartey, C., Li, W., and Qian, G., Flotation Kinetics of Molybdenite in Common Sulfate Salt Solutions, Miner. Eng., 2020, vol. 148. — 106182.

    Article  Google Scholar 

  12. Alvarez, A., Gutierrez, L., and Laskowski, J.S., Use of Polyethylene Oxide to Improve Flotation of Fine Molybdenite, Miner. Eng., 2018, vol. 127, pp. 232–237.

    Article  Google Scholar 

  13. Li, Sh., Gao, L., Wang, J., Zhou, H., Liao, Yi., Xing, Ya., Gui, X., and Cao, Yi., Polyethylene Oxide Assisted Separation of Molybdenite from Quartz by Flotation, Miner. Eng., 2021, vol. 162. — 106765.

    Article  Google Scholar 

  14. Wang, X., Yuan, Sh., Liu, J., Zhu, Yi., and Han, Yu., Nanobubble-Enhanced Flotation of Ultrafine Molybdenite and the Associated Mechanism, J. Molecular Liquids, 2022, vol. 346. — 118312.

    Article  Google Scholar 

  15. Suyantara, G.P.W., Hirajima, T., Miki, H., Sasaki, K., Yamane, M., Takida, E., Kuroiwa, Sh., and Imaizumi, Yu., Selective Flotation of Chalcopyrite and Molybdenite Using H2O2 Oxidation Method with the Addition of Ferrous Sulfate, Miner. Eng., 2018, vol. 122, pp. 312–326.

    Article  Google Scholar 

  16. Ignatkina, V.A., Aksenova, D.D., Kayumov, A.A., and Ergesheva, N.D., Hydrogen Peroxide in Reagent Regimes in Copper Sulphide Ore Flotation, Journal of Mining Science, 2022, vol. 58, no. 1, pp. 123–134.

    Article  Google Scholar 

  17. USSR State Standard GOST 212-76. Moscow: Izd. Standartov, 1978.

  18. Segura-Salazar, J. and Brito-Parada, P.R., Stibnite Froth Flotation: A Critical Review, Miner. Eng., 2021, vol. 163. 106713.

    Article  Google Scholar 

  19. Solozhenkin, P.M. and Zinchenko, Z.A., Obogashchenie surmyanykh rud (Antimony Ore Beneficiation), Moscow: Nauka, 1985.

    Google Scholar 

  20. Solozhenkin, P.M., Problemy tekhnologii obogashcheniya i pererabotki strategicheskogo vismutsoderzhashchego syr’ya (Engineering Problems of Beneficiation and Processing of Strategic Bismuth-Bearing Minerals), Moscow: OOO Nauchtekhlitizdat, 2020.

    Google Scholar 

  21. RF State Standard GOST 59117-2020. Moscow: Standartinform, 2020.

  22. Ignatkina, V.A., Kayumov, A.A., and Ergesheva, N.D., Floatability and Calculated Reactivity of Gold and Sulfide Minerals, Russian J. Non-Ferrous Metals, 2022, vol. 63, pp. 473–481.

    Article  Google Scholar 

  23. Samygin, V.D., Grigor’ev, P.V., Filippov, L.O., Ignatkina, V.A., and Charrier, F., Reactor with Automated Control of Formation Kinetics, Tsvet. Metallurgiya, 2002, no. 4, pp. 72–77.

  24. Ignatkina, V.A., Bocharov, V.A., and D’yachkov, F.G., Collecting Properties of Diisobutyl Dithiophosphinate in Sulfide Mineral Flotation from Sulfide Ore, Journal of Mining Science, 2013, vol. 49, no. 5, pp. 795–802.

    Article  Google Scholar 

  25. Kayumov, A.A., Ignatkina, V.A., Bocharov, V.A., Aksenova, D.D., Belokrys, M.A., and Milovich, F.O., Thiosulfate Ions during Tennantite Flotation, Proc. 30th Int. Miner. Proc. Congress, University of Cape Town, South Africa, 2021.

  26. Hirajima, T., Mikki H., Suyantara G.P.W., Matsuoka H., Elmahdy, A.M., Sasaki K., Imaizumi Yu., and Kuroiwa Sh. Selective Flotation of Chalcopyrite and Molybdenite with H2O2 Oxidation, Miner. Eng., 2017, vol. 100, pp 83–92.

    Article  Google Scholar 

  27. Peng, W., Liu, Sh., Cao, Yi., Wang, W., Ly, Sh., and Huang, Yu., A Novel Approach for Selective Flotation Separation of Chalcopyrite and Molybdenite—Electrocatalytic Oxidation Pretreatment and Its Mechanism, Applied Surface Sci., 2022, vol. 597. — 153753.

    Article  Google Scholar 

  28. Chanturia, V.A. and Vindergauz, V.E., Elektrokhimiya sul’fidov. Teoriya i praktika (Electrochemistry of Sulfides. Theory and Practice), Moscow: Ruda Metally, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ignatkina.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 145-160. https://doi.org/10.15372/FTPRPI20230114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatkina, V.A., Kayumov, A.A., Ergesheva, N.D. et al. Floatability of Low-Oxidizable Molybdenum and Antimony Sulfides in Controlled Oxidation–Reduction Conditions. J Min Sci 59, 127–141 (2023). https://doi.org/10.1134/S1062739123010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010143

Keywords

Navigation