Skip to main content
Log in

Morphogenetic movement of cells in embryogenesis of Drosophila melanogaster: Mechanism and genetic control

  • Review
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Great was the one who gave the direction.

Friedrich Wilhelm Nietzsche.

Abstract

Morphogenetic movement of cells is of significant importance in embryogenesis. It is necessary to identify the final position and configuration of the embryo’s tissues and share the positional information in differentiation. The healing of tissular injuries happens in the adult organism due to the cell layers’ movement, and the directed macrophages migration to the nidus of infection assists the neutralization of inflammatory processes. Owing to the good level of knowledge, the fruit fly D. melanogaster is a perfect model object for the study of morphogenetic events in embryogenesis in connection with the cells movement. The description of Drosophila embryogenesis, mechanisms of ventral furrow formation, elongation of the germ band, and its contraction accompanied by dorsal closure was given. During these processes the movement of epithelial cells and the entire epithelial strata happens. The information about the genetic regulation of morphogenetic movement of D. melanogaster taking into consideration the scale of evolutionary conservatism of the cascades of the main signal, which control these processes in vertebrates, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, P.N., Planar Signaling and Morphogenesis in Drosophila, Devel. Cell, 2002, vol. 2, pp. 525–535.

    Article  CAS  Google Scholar 

  • Axelrod, J.D., Unipolar Membrane Association of Dishevelled Mediates Frizzled Planar Cell Polarity Signaling, Genes Devel., 2001, vol. 15, pp. 1182–1187.

    PubMed  CAS  Google Scholar 

  • Bastock, R., Strutt, H., and Strutt, D., Strabismus is Asymmetrically Localised and Binds to Prickle and Dishevelled during Drosophila Planar Polarity Patterning, Development, 2003, vol. 130, pp. 3007–3014.

    Article  PubMed  CAS  Google Scholar 

  • Baum, B. and Perrimon, N., Spatial Control of the Actin Cytoskeleton in Drosophila Epithelial Cells, Nat. Cell Biol., 2001, vol. 3, pp. 883–890.

    Article  PubMed  CAS  Google Scholar 

  • Blankenship, J.T., Backovic, S., Sanny, J.S.P., et al., Multicellular Rosette Formation Links Planar Cell Polarity to Tissue Morphogenesis, Devel. Cell, 2006, vol. 11, pp. 459–470.

    Article  CAS  Google Scholar 

  • Brouns, M.R., Matheson, S.F., Hu, K.Q., et al., The Adhesion Signaling Molecule P190 RhoGAP is Required for Morphogenetic Processes in Neural Development, Development, 2000, vol. 127, pp. 4891–4903.

    PubMed  CAS  Google Scholar 

  • Campos-Ortega, J.A. and Hartenstein, V., The Embryonic Development of Drosophila Melanogaster, Berlin: Springer, 1985.

    Google Scholar 

  • Chong, J.A., Moran, M.M., Teichmann, M., et al., TATA-Binding Protein (TBP)-Like Factor (TLF) is a Functional Regulator of Transcription: Reciprocal Regulation of the Neurofibromatosis type 1 and c-fos Genes by TLF/TRF2 and TBP, Mol. Cell. Biol., 2005, vol. 25, pp. 2632–2643.

    Article  PubMed  CAS  Google Scholar 

  • Ciruna, B., Jenny, A., Lee, D., et al., Planar Cell Polarity Signalling Couples Cell Division and Morphogenesis During Neurulation, Nature, 2006, vol. 439, pp. 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Colas, J.F., Launay, J.-M., and Maroteaux, L., Maternal and Zygotic Control of Serotonin Biosynthesis are Both Necessary for Drosophila Germband Extension, Mech. Devel., 1999a, vol. 87, pp. 67–76.

    Article  CAS  Google Scholar 

  • Colas, J.F., Launay, J.M., Kellermann, O., et al., Drosophila 5-HT2 Serotonin Receptor: Coexpression with Fushi-Tarazu during Segmentation, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5441–5445.

    Article  PubMed  CAS  Google Scholar 

  • Colas, J.F., Launay, J.-M., Vonesch, J.-L., et al., Serotonin Synchronises Convergent Extension of Ectoderm with Morphogenetic Gastrulation Movements in Drosophila, J. High Resolut. Chromatogr. Chromatogr. Commun., 1999b, vol. 87, pp. 77–91.

    CAS  Google Scholar 

  • Costa, M., Wilson, E.T., and Wieschaus, E., A Putative Cell Signal Encoded by the Folded Gastrulation Gene Coordinates Cell Shape Changes during Drosophila Gastrulation, Cell, 1994, vol. 76, pp. 1075–1089.

    Article  PubMed  CAS  Google Scholar 

  • Das, G., Jenny, A., Klein, T.J., et al., Diego Interacts with Prickle and Strabismus/Van Gogh to Localize Planar Cell Polarity Complexes, Development, 2004, vol. 131, pp. 4467–4476.

    Article  PubMed  CAS  Google Scholar 

  • Dawes-Hoang, R.E., Parmar, K.M., Christiansen, A.E., et al., Folded Gastrulation, Cell Shape Change and the Control of Myosin Localization, J. High Resolut. Chromatogr. Chromatogr. Commun., 2005, vol. 132, pp. 4165–4178.

    CAS  Google Scholar 

  • Fehon, R.G., Dawson, I.A., and Artavanis-Tsakonas, S.A., Drosophila Homologue of Membrane-Skeleton Protein 4.1 is Associated with Septate Junctions and is Encoded by the Coracle Gene, J. High Resolut. Chromatogr. Chromatogr. Commun., 1994, vol. 120, pp. 545–557.

    CAS  Google Scholar 

  • Fischer, E. and Legue, E., Doyen A, Et Al. Defective Planar Cell Polarity in Polycystic Kidney Disease, Nat. Genet., 2006, vol. 38, pp. 21–23.

    Article  PubMed  CAS  Google Scholar 

  • Foe, V.E. and Alberts, B.M., Studies of Nuclear and Cytoplasmic Behaviour during the Five Mitotic Cycles That Precede Gastrulation in Drosophila Embryogenesis, J. Cell Sci., 1983, vol. 61, pp. 31–70.

    PubMed  CAS  Google Scholar 

  • Fox, D.T. and Peifer, M., Abelson Kinase (Abl) and RhoGEF2 Regulate Actin Organization during Cell Constriction in Drosophila, Development, 2007, vol. 134, pp. 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Gertler, F.B., Comer, A.R., Juang, J.L., et al., Enabled, a Dosage-Sensitive Suppressor of Mutations in the Drosophila Abl Tyrosine Kinase, Encodes an Abl Substrate with SH3 Domain-Binding Properties, Genes Devel., 1995, vol. 9, pp. 521–533.

    Article  PubMed  CAS  Google Scholar 

  • Ghabrial, A.S. and Krasnow, M.A., Social Interactions among Epithelial Cells during Tracheal Branching Morphogenesis, Nature, 2006, vol. 441, pp. 746–749.

    Article  PubMed  CAS  Google Scholar 

  • Glise, B. and Nosell, S., Coupling of Jun Amino-Terminal Kinase and Decapentaplegic Signaling Pathways in Drosophila Morphogenesis, Genes Devel., 1997, vol. 11, pp. 1738–1747.

    Article  PubMed  CAS  Google Scholar 

  • Glise, B., Bourbon, H., and Noselli, S., Hemipterous Encodes a Novel Drosophila MAP Kinase Kinase, Required for Epithelial Cell Sheet Movement, Cell, 1995, vol. 83, pp. 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, E.S., Treadway, S.L., Stephenson, A.E., et al., A Genetic Analysis of the Cytological Region 46C-F Containing the Drosophila melanogaster Homolog of the Jun Proto-Oncogene, Mol. Genet. Genomics, 2001, vol. 266, pp. 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Grevengoed, E.E., Loureiro, J.J., Jesse, T.L., et al., Abelson Kinase Regulates Epithelial Morphogenesis in Drosophila, J. Cell Biol., 2001, vol. 155, pp. 1185–1198.

    Article  PubMed  CAS  Google Scholar 

  • Gubb, D. and Garcia-Bellido, A., A Genetic Analysis of the Determination of Cuticular Polarity during Development in Drosophila melanogaster, J. Embryol. Exp. Morphol., 1982, vol. 62, pp. 37–57.

    Google Scholar 

  • Hacker, U. and Perrimon, N., DRhoGEF2 Encodes a Member of the Dbl Family of Oncogenes and Controls Cell Shape Changes during Gastrulation in Drosophila, Genes Devel., 1998, vol. 12, pp. 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Hartenstein, V., Atlas of Drosophila Development, New York: Cold Spring Harbor Lab. Press, 1993.

    Google Scholar 

  • Hyodo-Miura, J., Yamamoto, T.S., Hyodo, A.C., et al., XGAP, an ArfGAP, is Required for Polarized Localization of PAR Proteins and Cell Polarity in Xenopus Gastrulation, Devel. Cell, 2006, vol. 11, pp. 69–79.

    Article  CAS  Google Scholar 

  • Irvine, K. and Wieschaus, E., Cell Intercalation during Drosophila Germband Extension and Its Regulation by Pair-Rule Segmentation Genes, Development, 1994, vol. 120, pp. 827–841.

    PubMed  CAS  Google Scholar 

  • Ivanova-Kazas, O.M. and Krichinskaya, E.B., Kurs sravnitel’noi embriologii bespozvonochnykh zhivotnykh (A Course of Comparative Embryology of Invertebrates), Leningrad: Leningr. Gos. Univ., 1988.

    Google Scholar 

  • Jiang, L. and Crews, S.T., Transcriptional Specificity of Drosophila Dysfusion and the Control of Tracheal Fusion Cell Gene Expression, J. Biol. Chem., 2007, vol. 282, pp. 28659–28668.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. and Chen, P., Planar Cell Polarity Signaling in Vertebrates, BioEssays, 2007, vol. 29, pp. 120–132.

    Article  PubMed  CAS  Google Scholar 

  • Jürgens, G., Wieschaus, E., Nusslein-Volhard, C., et al., Mutations Affecting the Pattern of the Larval Cuticle in Drosophila melanogaster: II. Zygotic Loci on the Third Chromosome, Roux’s Arch. Devel. Biol., 1984, vol. 193, pp. 283–295.

    Article  Google Scholar 

  • Kaltschmidt, J.A., Lawrence, N., Morel, V., et al., Planar Polarity and Actin Dynamics in the Epidermis of Drosophila, Nature Cell Biol., 2002, vol. 4, pp. 937–944.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R., Davidson, L., Edlund, A., et al., Mechanisms of Convergence and Extension by Cell Intercalation, Philos. Trans. R. Soc. L. B. Biol. Sci., 2000, vol. 355, pp. 897–922.

    Article  CAS  Google Scholar 

  • Keller, R., Shaping the Vertebrate Body Plan by Polarized Embryonic Cell Movements, Science, 2002, vol. 298, pp. 1950–1954.

    Article  PubMed  CAS  Google Scholar 

  • Knust, E., Drosophila Morphogenesis: Follow-My-Leader in Epithelia, Curr. Biol., 1996, vol. 6, pp. 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Koleske, A.J., Gifford, A.M., Scott, M.L., et al., Essential Roles for the Abl and Arg Tyrosine Kinases in Neurulation, Neuron, 1998, vol. 21, pp. 1259–1272.

    Article  PubMed  CAS  Google Scholar 

  • Kuzin, B., Regulski, M., Stasiv, Y., et al., Nitric Oxide Interacts with Retinoblastoma Pathway to Control Eye Development in Drosophila, Curr. Biol., 2000, vol. 10, pp. 459–462.

    Article  PubMed  CAS  Google Scholar 

  • Kuzin, B., Roberts, I., Peunova, N., and Enikolopov, G., Nitric Oxide Regulates Cell Proliferation during Drosophila Development, Cell, 1996, vol. 87, pp. 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Lanier, L.M. and Gertler, F.B., From Abl to Actin: Abl Tyrosine Kinase and Associated Proteins in Growth Cone Motility, Curr. Opin. Neurobiol., 2000, vol. 10, pp. 80–87.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, P.A., Casal, J., and Struhl, G., Towards a Model of the Organisation of Planar Polarity and Pattern in the Drosophila Abdomen, Development, 2002, vol. 129, pp. 2749–2760.

    PubMed  CAS  Google Scholar 

  • Logan, C.Y. and Nusse, R., The Wnt Signaling Pathway in Development and Disease, Annu. Rev. Cell Devel. Biol., 2004, vol. 20, pp. 781–810.

    Article  CAS  Google Scholar 

  • Luschnig, S., Moussian, B., Krauss, J., et al., An F1 Genetic Screen for Maternal-Effect Mutations Affecting Embryonic Pattern Formation in Drosophila melanogaster, Genetics, 2004, vol. 167, pp. 325–342.

    Article  PubMed  CAS  Google Scholar 

  • MacKrell, A.J., Blumberg, B., Haynes, S.R., et al., The Lethal Myospheroid Gene of Drosophila Encodes a Membrane Protein Homologous to Vertebrate Integrin Subunits, Proc. Natl. Acad. Sci. USA, 1988, vol. 85, pp. 2633–2637.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, C.J., MAP Kinase Kinase Kinase, MAP Kinase Kinase and MAP Kinase, Curr. Opin. Genet. Devel., 1994, vol. 4, pp. 82–89.

    Article  CAS  Google Scholar 

  • Martin, D., Zusman, S., Li, X., et al., Wing Blister, a New Drosophila Laminin Alpha Chain Required for Cell Adhesion and Migration during Embryonic and Imaginal Development, J. Cell Biol., 1999, vol. 145, pp. 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P. and Nobes, C.D., An Early Molecular Component of the Wound Healing Process in Rat Embryos: Induction of c-fos Protein in Cells at the Epidermal Wound Margin, Mech. Devel., 1992, vol. 38, pp. 209–215.

    Article  CAS  Google Scholar 

  • Martin, P., Dickson, M.C., Milan, F.A., et al., Rapid Induction and Clearance of TGFβ-1 is an Early Response to Wounding in the Mouse Embryo, Devel. Genet., 1993, vol. 14, pp. 225–238.

    Article  CAS  Google Scholar 

  • Martin, P., Wound Healing—Aiming for Perfect Skin Regeneration, Science, 1997, vol. 276, pp. 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J.R., Rowning, B.A., Larabell, C.A., et al., Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled that is Dependent on Cortical Rotation, J. Cell Biol., 1999, vol. 146, pp. 427–437.

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik, M., Planar Cell Polarization: do the Same Mechanisms Regulate Drosophila Tissue Polarity and Vertebrate Gastrulation?, Trends Genet., 2002, vol. 18, pp. 564–571.

    Article  PubMed  CAS  Google Scholar 

  • Modestova, E.A., Kopytova, D.V., Georgieva, S.G., and Simonova, O.B., P-Ph-Mediated Repression of the legarista-wing complex Gene Transcription in Drosophila, Genetika, 2003, vol. 39, no. 5, pp. 713–716.

    PubMed  CAS  Google Scholar 

  • Modestova, E.A., Vorontsova, Yu.E., Korochkin, L.I., and Simonova, O.B., Induction of Lethal Mutations of the Legarista-wing complex Gene of Drosophila melanogaster, Dokl. Akad. Nauk, 2005, vol. 403, no. 4, pp. 564–565. [Dokl. (Engl. Transl.), vol. 403, no. 4, pp. 282–283].

    Google Scholar 

  • Morize, P., Christiansen, A.E., Costa, M., et al., Hyperactivation of the Folded Gastrulation Pathway Induces Specific Cell Shape Changes, Development, 1998, vol. 125, pp. 589–597.

    PubMed  CAS  Google Scholar 

  • Nelson, W.J., Tube Morphogenesis: Closure, But Many Openings Remain, Trends Cell Biol., 2003, vol. 13, pp. 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Nikolaidou, K.K. and Barrett, K., A Rho GTPase Signaling Pathway is Used Reiteratively in Epithelial Folding and Potentially Selects the Outcome of Rho Activation, Curr. Biol., 2004, vol. 14, pp. 1822–1826.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya, H., Elinson, R.P., and Winklbauer, R., Antero-Posterior Tissue Polarity Links Mesoderm Convergent Extension to Axial Patterning, Nature, 2004, vol. 430, pp. 364–367.

    Article  PubMed  CAS  Google Scholar 

  • Nobes, C.D. and Hall, A., Rho GTPases Control Polarity, Protrusion, and Adhesion during Cell Movement, J. Cell Biol., 1999, vol. 144, pp. 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Oda, H., Tsukita, S., and Takeichi, M., Dynamic Behavior of the Cadherin-Based Cell-Cell Adhesion System during Drosophila Gastrulation, Devel. Biol., 1998, vol. 203, pp. 435–450.

    Article  CAS  Google Scholar 

  • Parks, S. and Wieschaus, E., The Drosophila Gastrulation Gene Concertina Encodes a G Alpha-Like Protein, Cell, 1991, vol. 64, pp. 447–458.

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Pareja, J.C., Grawe, F., Martin-Blanco, E., et al., Invasive Cell Behavior during Drosophila Imaginal Disc Eversion is Mediated by the JNK Signaling Cascade, Devel. Cell, 2004, vol. 7, pp. 387–399.

    Article  CAS  Google Scholar 

  • Perkins, K.K., Admon, A., Patel, N., et al., The Drosophila Fos-Related AP-1 Protein Is a Developmentally Regulated Transcription Factor, Genes Devel., 1990, vol. 4, pp. 822–834.

    Article  PubMed  CAS  Google Scholar 

  • Perrimon, N. and Mahowald, A., Multiple Functions of Segment Polarity Genes in Drosophila, Devel. Biol, 1987, vol. 119, pp. 587–600.

    Article  CAS  Google Scholar 

  • Peunova, N., Sheinker, V., Ravi, K., and Enikolopov, G., Nitric Oxide Coordinates Cell Proliferation and Cell Movements during Early Development of Xenopus, Cell Cycle, 2007, vol. 6, pp. 3132–3144.

    PubMed  CAS  Google Scholar 

  • Pilot, F. and Lecuit, T., Compartmentalized Morphogenesis in Epithelia: from Cell to Tissue Shape, Devel. Dyn., 2005, vol. 232, pp. 685–694.

    Article  CAS  Google Scholar 

  • Poluektova, E.V., Mitrofanov, V.G., Burychenko, G.M., et al., Ob“ekty biologii razvitiya. Drozofila — Drosophila (Developmental Biology Objects: Drosophila), Moscow: Nauka, 1975.

    Google Scholar 

  • Riesgo-Escovar, J.R. and Hafen, E., Drosophila Jun Kinase Regulates Expression of Decapentaplegic via the ETSDomain Protein Aop and the AP-1 Transcription Factor, DJun, during Dorsal Closure, Genes Devel., 1997, vol. 11, pp. 1717–1727.

    Article  PubMed  CAS  Google Scholar 

  • Ring, J.M. and Martinez-Arias, A., Puckered, a Gene Involved in Position-Specific Cell Differentiation in the Dorsal Epidermis of the Drosophila Larva, Development, 1993, vol. 119, pp. 251–259.

    Google Scholar 

  • Rogers, S.L., Wiedemann, U., Hacker, U., et al., Drosophila RhoGEF2 Associates with Microtubule Plus Ends in an EB1-Dependent Manner, Curr. Biol., 2004, vol. 14, pp. 1827–1833.

    Article  PubMed  CAS  Google Scholar 

  • Schaerlinger, B., Launay, J.M., Vonesch, J.L., et al., Gain of Affinity Point Mutation in the Serotonin Receptor Gene 5-HT2Dro Accelerates Germband Extension Movements during Drosophila Gastrulation, Devel. Dyn., 2007, vol. 236, pp. 991–999.

    Article  CAS  Google Scholar 

  • Schock, F. and Perrimon, N., Cellular Processes Associated with Germ Band Retraction in Drosophila, Devel. Biol., 2002, vol. 248, pp. 29–39.

    Article  CAS  Google Scholar 

  • Schock, F. and Perrimon, N., Retraction of the Drosophila Germ Band Requires Cell-Matrix Interaction, Genes Devel., 2003, vol. 17, pp. 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Schoenwolf, G.C. and Alvarez, I.S., Roles of Neuroepithelial Cell Rearrangement and Division in Shaping of the Avian Neural Plate, Development, 1989, vol. 106, pp. 427–439.

    PubMed  CAS  Google Scholar 

  • Shimada, Y., Yonemura, S., Ohkura, H., et al., Polarized Transport of Frizzled Along the Planar Microtubule Arrays in Drosophila Wing Epithelium, Devel. Cell, 2006, vol. 10, pp. 209–222.

    Article  CAS  Google Scholar 

  • Simonova, O.B., Kuzin, B.A., Georgiev, P.G., and Gerasimova, T.I., A New Regulatory Mutation of Drosophila, Genetika, 1992, vol. 28, no. 2, pp. 164–167.

    Google Scholar 

  • Simonova, O.B., A New trans-Regulatory Locus of Drosophila, Genetika, 2000, vol. 36, no. 11, pp. 1464–1474.

    PubMed  CAS  Google Scholar 

  • Slezinger, M.S. and Kuzin, B.A., Nitric Oxide Synthase Mediates Regulation of Cell Polarity and Movement during Drosophila melanogaster Morphogenesis, Ontogenez, 2009, vol. 40, no. 1, pp. 40–47 [Rus. J. Dev. Biol., vol. 40, no. 1, pp. 31–37].

    PubMed  CAS  Google Scholar 

  • Stasiv, Y., Kuzin, B., Regulski, M., et al., Regulation of Multimers via Truncated Isoforms: a Novel Mechanism to Control Nitric Oxide Signaling, Genes Devel., 2004, vol. 18, pp. 1812–1823.

    Article  PubMed  CAS  Google Scholar 

  • Stasiv, Y., Regulski, M., Kuzin, B., et al., The Drosophila Nitric Oxide Synthase Gene (DNOS) Encodes a Family of Proteins that can Modulate NOS Activity by Acting as Dominant Negative Regulators, J. Biol. Chem., 2001, vol. 276, pp. 42241–42251.

    Article  PubMed  CAS  Google Scholar 

  • Strutt, D.I., The Asymmetric Subcellular Localisation of Components of the Planar Polarity Pathway, Semin. Cell Devel. Biol, 2002, vol. 13, pp. 225–231.

    Article  CAS  Google Scholar 

  • Suzuki, A. and Ohno, S., The PARaPKC System: Lessons in Polarity, J. Cell Sci., 2006, vol. 119, pp. 979–987.

    Article  PubMed  CAS  Google Scholar 

  • Tree, D.R., Shulman, J.M., Rousset, R., et al., Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling, Cell, 2002, vol. 109, pp. 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Turner, F.R. and Mahowald, A.P., Scanning Electron Microscopy of Drosophila melanogaster Embryogenesis. II. Gastrulation and Segmentation, Devel. Biol., 1977, vol. 57, pp. 403–416.

    Article  CAS  Google Scholar 

  • Usui, T., Shima, Y., Shimada, Y., et al., Flamingo, a Seven-Pass Transmembrane Cadherin, Regulates Planar Cell Polarity Under the Control of Frizzled, Cell, 1988, vol. 98, pp. 585–595.

    Article  Google Scholar 

  • Vorontsova, Yu.G., Modestova, E.A., Burdina, N.V., and Simonova, O.B., Restoring Viability of Lethal Mutants for the leg-arista-wing-complex Gene in Rescue Experiments with Transgenic Constructs that Express the trf2 Gene Domains in Drosophila melanogaster, Dokl. Akad. Nauk, 2007, vol. 417, no. 1, pp. 133–135 [Dokl. (Engl. Transl.), vol. 417, no. 1, pp. 429–431].

    Google Scholar 

  • Wong, L.L. and Adler, P.N., Tissue Polarity Genes of Drosophila Regulate the Subcellular Location for Prehair Initiation in Pupal Wing Cells, J. Cell Biol., 1993, vol. 123, pp. 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Young, P.E., Richman, A.M., Ketchum, A.S., et al., Morphogenesis in Drosophila Requires Nonmuscle Myosin Heavy Chain Function, Genes Devel., 1993, vol. 7, pp. 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Zallen, J.A. and Wieschaus, E., Patterned Gene Expression Directs Bipolar Planar Polarity in Drosophila, Devel. Cell, 2004, vol. 6, pp. 343–355.

    Article  CAS  Google Scholar 

  • Zecchini, V., Brennan, K., and Martinez-Arias, A., An Activity of Notch Regulates JNK Signalling and Affects Dorsal Closure in Drosophila, Curr. Biol., 1999, vol. 9, pp. 460–469.

    Article  PubMed  CAS  Google Scholar 

  • Zeitlinger, J. and Bohmann, D., Thorax Closure in Drosophila: Involvement of Fos and the JNK Pathway, Development, 1999, vol. 126, pp. 3947–3956.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Simonova.

Additional information

Original Russian Text © O.B. Simonova, N.V. Burdina, 2009, published in Ontogenez, 2009, Vol. 40, No. 5, pp. 355–372.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonova, O.B., Burdina, N.V. Morphogenetic movement of cells in embryogenesis of Drosophila melanogaster: Mechanism and genetic control. Russ J Dev Biol 40, 283–299 (2009). https://doi.org/10.1134/S1062360409050038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360409050038

Key words

Navigation