Skip to main content
Log in

TNFRSF12A mRNA Expression and Distribution of TNFRSF12A+ Cells in the Rate Liver during Thioacetamide-Induced Fibrogenesis

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

TNFRSF12A mRNA expression and the distribution of TNFRSF12A+ cells were studied in detail for the first time at different stages of fibrosis in the rat liver. Under physiological conditions, the expression level of TNFRSF12A mRNA was 0.224 (95% CI: 0.170–0.277). At the same time, cells expressing the TNFRSF12A marker were practically absent. In bridging fibrosis, the first peak of TNFRSF12A mRNA growth (p = 0.000) and an increase in the area of TNFRSF12A+ cells (p = 0.000) was established. The second peak (p = 0.000) was detected during the process of transformation of fibrosis into cirrhosis. At the stage of incomplete cirrhosis, a sharp drop was noted. A subsequent increase in the expression of TNFRSF12A mRNA and the area of TNFRSF12A+ cells was observed from the stage of significant cirrhosis. The immunohistochemical method revealed two groups of TNFRSF12A+ cells. In the sinusoidal capillaries TNFRSF12A+, the cells had a shape close to flat and resembled endotheliocytes, while in the fibrous connective tissue they were rounded. The number of α-SMA+ cells increased gradually (p = 0.000) before the onset of significant cirrhosis, and then there was a sharp increase (p = 0.000).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Breit, H.C., Block, K.T., Winkel, D.J., Gehweiler, J.E., Henkel, M.J., Weikert, T., Stieltjes, B., Boll, D.T., and Heye, T.J., Evaluation of liver fibrosis and cirrhosis on the basis of quantitative T1 mapping: are acute inflammation, age and liver volume confounding factors?, Eur. J. Radiol., 2021, no. 141, p. 109789. https://doi.org/10.1016/j.ejrad.2021.109789

  2. Burkly, L.C., Michaelson, J.S., Hahm, K., Jakubowski, A., and Zheng, T.S., TWEAKing tissue remodeling by a multifunctional cytokine: role of TWEAK/Fn14 pathway in health and disease, Cytokine, 2007, vol. 40, no. 1, pp. 1–16. https://doi.org/10.1016/j.cyto.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  3. Cai, J., Hu, M., Chen, Z., and Ling, Z.J., The roles and mechanisms of hypoxia in liver fibrosis, Transl. Med., 2021, vol. 19, no. 1, p. 186. https://doi.org/10.1186/s12967-021-02854-x

    Article  Google Scholar 

  4. Chen, H.N., Wang, D.J., Ren, M.Y., Wang, Q.L., and Sui, S.J., TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-кB pathway, Mol. Biol. Rep., 2012, vol. 39, no. 8, pp. 8231–8241. https://doi.org/10.1007/s11033-012-1671-3

    Article  CAS  PubMed  Google Scholar 

  5. Chen, W., Liu, Y., Chen, J., Ma, Y., Song, Y., Cen, Y., You, M., and Yang, G., The notch signaling pathway regulates macrophage polarization in liver diseases, Int. Immunopharmacol., 2021, no. 99, p. 107938. https://doi.org/10.1016/j.intimp.2021.107938

  6. Cheng, D., Chai, J., Wang, H., Fu, L., Peng, S., and Ni, X., Hepatic macrophages: key players in the development and progression of liver fibrosis, Liver Int., 2021, vol. 41, no. 10, pp. 2279–2294. https://doi.org/10.1111/liv.14940

    Article  PubMed  Google Scholar 

  7. Dwyer, B.J., Jarman, E.J., Gogoi-Tiwari, J., Ferreira-Gonzalez, S., Boulter, L., Guest, R.V., Kendall, T.J., Kurian, D., Kilpatrick, A.M., Robson, A.J., O’Duibhir, E., Man, T.Y., Campana, L., Starkey, Lewis, P.J., Wigmore, S.J., Olynyk, J.K., Ramm, G.A., Tirnitz-Parker, J.E.E., and Forbes, S.J., TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression, J. Hepatol., 2021, vol. 74, no. 4, pp. 860–872. https://doi.org/10.1016/j.jhep.2020.11.018

    Article  CAS  PubMed  Google Scholar 

  8. Esmail, M.M., Saeed, N.M., Michel, H.E., and El-Naga-, R.N., The ameliorative effect of niclosamide on bile duct ligation induced liver fibrosis via suppression of NOTCH and Wnt pathways, Toxicol. Lett., 2021, no. 347, pp. 23–35. https://doi.org/10.1016/j.toxlet.2021.04.018

  9. Everhart, J.E., Wright, E.C., Goodman, Z.D., Dienstag, J.L., Hoefs, J.C., Kleiner, D.E., Ghany, M.G., Mills, A.S., Nash, S.R., Govindarajan, S., Rogers, T.E., Greenson, J.K., Brunt, E.M., Bonkovsky, H.L., Morishima, C., Litman, H.J., and Group, H., ALT-C. Prognostic value of Ishak fibrosis stage: findings from the hepatitis C antiviral long-term treatment against cirrhosis trial, Hepatology, 2010, vol. 51, no. 2, pp. 585–594. https://doi.org/10.1002/hep.23315

    Article  PubMed  Google Scholar 

  10. Gomez, I.G., Roach, A.M., Nakagawa, N., Amatucci, A., Johnson, B.G., Dunn, K., Kelly, M.C., Karaca, G., Zheng, T.S., Szak, S., Peppiatt-Wildman, C.M., Burkly, L.C., and Duffield, J.S., TWEAK-Fn14 signaling activates myofibroblasts to drive progression of fibrotic kidney disease, J. Am. Soc. Nephrol., 2016, vol. 27, no. 12, pp. 3639–3652. https://doi.org/10.1681/ASN.2015111227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guerrier, M., Attili, F., Alpini, G., and Glaser, S., Prolonged administration of secretin to normal rats increases biliary proliferation and secretin-induced ductal secretory activity, Hepatobiliary Surg. Nutr., 2014, vol. 3, no. 3, pp. 118–125. https://doi.org/10.3978/j.issn.2304-3881.2014.04.04

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jakubowski, A., Ambrose, C., Parr, M., Lincecum, J.M., Wang, M.Z., Zheng, T.S., Browning, B., Michaelson, J.S., Baetscher, M., Wang, B., Bissell, D.M., and Burkly, L.C., Tweak induces liver progenitor cell proliferation, J. Clin. Invest., 2005, vol. 115, no. 9, pp. 2330–2340. https://doi.org/10.1172/JCI23486

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khan, S. and Saxena, R., Regression of hepatic fibrosis and evolution of cirrhosis: a concise review, Adv. Anat. Pathol., 2021, vol. 28, no. 6, pp. 408–414. https://doi.org/10.1097/PAP.0000000000000312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kisseleva, T. and Brenner, D., Molecular and cellular mechanisms of liver fibrosis and its regression, Nat. Rev. Gastroenterol. Hepatol., 2021, vol. 18, no. 3, pp. 151–166. https://doi.org/10.1038/s41575-020-00372-7

    Article  PubMed  Google Scholar 

  15. Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii (Theoretical Foundations and Practical Application of Immunohistochemistry Methods), Korzhevskii, D.E., Ed., St. Petersburg: SpetsLit, 2014.

    Google Scholar 

  16. Li, N., Hu, W.J., Shi, J., Xue, J., Guo, W.X., Zhang, Y., Guan, D.X., Liu, S.P., Cheng, Y.Q., Wu, M.C., Xie, D., Liu, S.R., and Cheng, S.Q., Roles of fibroblast growth factor-inducible 14 in hepatocellular carcinoma, Asian Pac. J. Cancer. Prev., 2013, vol. 14, no. 6, pp. 3509–3514. https://doi.org/10.7314/apjcp.2013.14.6.3509

    Article  PubMed  Google Scholar 

  17. Li, S., Gan, L., Tian, Y.J., Tian, Y., Fan, R.Z., Huang, D., Yuan, F.Y., Zhang, X., Lin, Y., Zhu, Q.F., Tang, G.H., Yan, X.L., and Yin, S., Presegetane diterpenoids from Euphorbia sieboldiana as a new type of anti-liver fibrosis agents that inhibit TGF-β/Smad signaling pathway, Bioorg. Chem., 2021, no. 114, p. 105222. https://doi.org/10.1016/j.bioorg.2021.105222

  18. Liu, Q.W., Ying, Y.M., Zhou, J.X., Zhang, W.J., Liu, Z.X., Jia, B.B., Gu, H.C., Zhao, C.Y., Guan, X.H., Deng, K.Y., and Xin, H.B., Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice, Stem. Cell Res. Ther., 2022, vol. 13, no. 1, p. 224. https://doi.org/10.1186/s13287-022-02906-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mezhdunarodnye terminy po tsitologii i gistologii cheloveka s ofitsial’nym spiskom russkikh ekvivalentov (International Terms for Human Cytology and Histology with an Official List of Russian Equivalents), Banin, V.V. and Bykov, V.L., Eds., Moscow: GEOTAR-Media, 2009.

    Google Scholar 

  20. Odagiri, N., Matsubara, T., Sato-Matsubara, M., Fujii, H., Enomoto, M., and Kawada, N., Anti-fibrotic treatments for chronic liver diseases: the present and the future, Clin. Mol. Hepatol., 2021, vol. 27, no. 3, pp. 413–424. https://doi.org/10.3350/cmh.2020.0187

    Article  PubMed  Google Scholar 

  21. Rockey, D.C. and Friedman, S.L., Fibrosis regression after eradication of hepatitis c virus: from bench to bedside, Gastroenterology, 2021, vol. 160, no. 5, pp. 1502–1520.e1. https://doi.org/10.1053/j.gastro.2020.09.065

    Article  CAS  PubMed  Google Scholar 

  22. Tadokoro, T., Morishita, A., and Masaki, T., Diagnosis and therapeutic management of liver fibrosis by microRNA, Int. J. Mol. Sci., 2021, vol. 22, no. 15, p. 8139. https://doi.org/10.3390/ijms22158139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Voutilainen, S.H., Kosola, S.K., Lohi, J., Mutka, A., Jahnukainen, T., Pakarinen, M., and Jalanko, H., Expression of 6 biomarkers in liver grafts after pediatric liver transplantation: correlations with histology, biochemistry, and outcome, Ann. Transplant., 2020, no. 25, p. e925980. https://doi.org/10.12659/AOT.925980

  24. Wang, M., Xie, Z., Xu, J., and Feng, Z., TWEAK/Fn14 axis in respiratory diseases, Clin. Chim. Acta, 2020, no. 509, pp. 139–148. https://doi.org/10.1016/j.cca.2020.06.007

  25. Weiskirchen, R., Special issue on “cellular and molecular mechanisms underlying the pathogenesis of hepatic fibrosis,” Cells, 2020, vol. 9, no. 5, p. 1105. https://doi.org/10.3390/cells9051105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilhelm, A., Shepherd, E.L., Amatucci, A., Munir, M., Reynolds, G., Humphreys, E., Resheq, Y., Adams, D.H., Hubscher, S., Burkly, L.C., Weston, C.J., and Afford, S.C., Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation, J. Pathol., 2016, vol. 239, no. 1, pp. 109–121. https://doi.org/10.1002/path.4707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Winkles, J.A., The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting, Nat. Rev. Drug. Discovery, 2008, vol. 7, no. 5, pp. 411–425. https://doi.org/10.1038/nrd2488

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y., Zeng, W., and Xia, Y., TWEAK/Fn14 axis is an important player in fibrosis, J. Cell Physiol., 2021, vol. 236, no. 5, pp. 3304–3316. https://doi.org/10.1002/jcp.30089

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, L., Lv, Z., Gong, Z., Sheng, Q., Gao, Z., Zhang, Y., Yu, S., Zhou, J., Xi, Z., and Wang, X., Fn14 hepatic progenitor cells are associated with liver fibrosis in biliary atresia, Pediatr. Surg. Int., 2017, vol. 33, no. 5, pp. 593–599. https://doi.org/10.1007/s00383-017-4068-5

    Article  PubMed  Google Scholar 

  30. Zhizhin, K.S., Meditsinskaya statistika: uchebnoe posobie (Medical Statistics: Textbook), Rostov-on-Don, 2007.

Download references

Funding

This work was carried out within the framework of the state scientific research program “Basic and Applied Sciences—Medicine” of the Ministry of Health of the Republic of Belarus, task no. 2.89 “Study of the Role of the Expression of Genes of NOTCH- and TWEAK-signaling Pathways Involved in the Processes of Proliferation and Differentiation of Liver Cells in Normal Conditions and in Defeating Its Toxic State” (registration no. 20190107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Lebedeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The experimental protocol was approved at a meeting of the Commission on Bioethics and Humane Treatment of Laboratory Animals at the educational institution Vitebsk State Order of Friendship of Peoples Medical University (protocol no. 6 of January 3, 2019). All manipulations with animals were carried out in accordance with the recommendations of the Council of Europe Convention for the Conservation of Vertebrate Animals Used for Experimental and Other Scientific Purposes dated March 18, 1986; the EEC Council Directive dated November 24, 1986; and the recommendations of the FELASA Working Group Report (1994–1996).

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, E.I., Shchastniy, A.T. & Babenka, A.S. TNFRSF12A mRNA Expression and Distribution of TNFRSF12A+ Cells in the Rate Liver during Thioacetamide-Induced Fibrogenesis. Biol Bull Russ Acad Sci 51, 11–20 (2024). https://doi.org/10.1134/S1062359023602021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602021

Keywords:

Navigation