Skip to main content
Log in

Fungi in Groundwater Springs and Wells in Moscow Region

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The number, species composition, and taxonomic structure of fungal biota in the groundwater of natural springs and wells in Moscow and Moscow oblast were determined by the сultural method. The number of fungi was low, on average, from 10 to 300 colony-forming units (CFU) in one liter of water. From the water of one source or well, 6–16 species were isolated, and in total, 46 species were isolated from six objects studied. These were representatives of phylum Mucoromycota, class Mucoromycetes (Absidia cylindrospora var. nigra, Mucor circinelloides, M. hiemalis, and Rhizopus stolonifer), phylum Ascomycota, class Eurotiomycetes (15 species of the genera Aspergillus and Penicillium), Sordariomycetes (13 species of the genera Acremonium, Chaetomium, Fusarium, Myrothecium, Plectosphaerella, and Trichoderma), Dothidiomycetes (Alternaria alternata, A. nobilis, Amorocoelophoma cassia, Cladosporium cladosporioides, and C. sphaerospermum) and Saccharomycetes (Candida solani, C. zeylanoides, and Galactomyces pseudocandidus), and the phylum Basidiomycota, class Tremellomycetes (Mrakia gelida and Vishniacozyma victoriae) and Agaricomycetes (Phlebia acerina, Psathyrella candolleana, and Thanatephorus cucumeris). The established taxonomic structure of fungal biota in the waters of natural springs and wells of the Moscow metropolis is similar to that found in the groundwater of other regions, including groundwater at the depths of several hundred meters. The possibilities of adaptation of micromycetes to existence in groundwater, the sources of its contamination, and the need for mycological criteria for assessing water quality are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Anaissie, E.J., Stratton, S.L., Dignani, M.C., Lee, C., Summerbell, R.C., and Rex, J.H., Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies, Blood, 2003, vol. 101, pp. 2542–2546.

    Article  CAS  PubMed  Google Scholar 

  2. Arvanitidou, M., Kanellou, K., Constantinides, T.C., and Katsouyannopoulos, V., The occurrence of fungi in hospital and community potable waters, Lett. Appl. Microbiol., 1999, vol. 29, pp. 81–84.

    Article  CAS  PubMed  Google Scholar 

  3. Babič, M., Zalar, P., Ženko, B., Džeroski, S., and Gunde-Cimerman, N., Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances, Fungal Ecol., 2016, vol. 20, pp. 30–39.

    Article  Google Scholar 

  4. Babič, M.N., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Verissimo, C., Sabino, R., Viegas, C., Meyer, W., and Brandao, J., Fungal contaminants in drinking water regulation? a tale of ecology, exposure, purification and clinical relevance, Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 6, p. 636.

    Article  Google Scholar 

  5. Crous, P.W., Braun, U., Schubert, K., and Groenewald, J.Z., The genus Cladosporium and similar dematiaceous hyphomycetes, Stud. Mycol., 2007, vol. 58, pp. 1–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Domsch, K.H., Gams, W., and Anderson, T.H., Compendium of Soil Fungi, 2nd ed., Eching: IHW-Verlag, 2007.

  7. Ekendahl, S., O’Neill, A.H., Thomsson, E., and Pedersen, K., Characterisation of yeasts isolated from deep igneous rock aquifers of the Fennoscandian shield, Octolasion cyaneum, Microb. Ecol., 2003, vol. 46, no. 4, pp. 416–428.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Frankova, E. and Horecka, M., Filamentous soil fungi and unidentified bacteria in drinking water from wells and water mains near Bratislava, Microbiol. Res., 1995, vol. 150, pp. 311–313.

    Article  CAS  PubMed  Google Scholar 

  9. Gessner, M. and van Ryckegem, G., Water fungi as decomposers in freshwater ecosystems, in Encyclopedia of Environmental Microbiology, Bitton, G., Ed., New York: Wiley, 2003.

    Google Scholar 

  10. Gleason, F., Schmidt, K., and Marano, V., Can zoosporic true fungi grow or survive in extreme or stressful environments?, Extremophiles, 2010, vol. 14, pp. 417–425.

    Article  PubMed  Google Scholar 

  11. Golovchenko, A.V., Kurakov, A.V., Semenova, T.A., and Zvyagintsev, D.G., Abundance, diversity, viability, and factorial ecology of fungi in peatbogs, Eurasian Soil Sci., 2013, vol. 46, no. 1, pp. 74–90.

    Article  ADS  Google Scholar 

  12. Gonçalves, A.B., Paterson, R.R.M., and Lima, N., Survey and significance of filamentous fungi from tap water, Int. J. Hyg. Environ. Health, 2006, vol. 209, pp. 257–264.

    Article  PubMed  Google Scholar 

  13. GOST 31942-2012. Voda. Otbor prob dlya mikrobiologicheskogo analiza. Ofitsial’noe izdanie (GOST 31942-2012. Water. Sampling for Microbiological Analysis. Official Publication), Moscow: Standartinform, 2019.

  14. Göttlich, E., van der Lubbe, W., Lange, B., Fiedler, S., Melchert, I., Reifenrath, M., Flemming, H.-C., and de Hoog, S., Fungal flora in groundwater-derived public drinking water, Int. J. Hyg. Environ. Health, 2002, vol. 200 P, p. 11.

  15. Hageskal, G., Gaustad, P., Heier, B.T., and Skaar, I., Occurrence of moulds in drinking water, J. Appl. Microbiol., 2007, vol. 102, pp. 774–780.

    Article  CAS  PubMed  Google Scholar 

  16. Hayette, M.-P., Christiaens, G., Mutsers, J., Barbier, C., Huynen, P., Meli, P., and de Mol, P., Filamentous fungi recovered from the water distribution system of a Belgian university hospital, Med. Mycol., 2010, vol. 48, pp. 969–974.

    Article  PubMed  Google Scholar 

  17. Jones, E.B.G., Hyde, K.D., and Pang, K.L., Freshwater Fungi and Fungal-Like Organisms, Berlin: Walter de Gruyter GmbH, 2014.

    Book  Google Scholar 

  18. Klich, M.A., Identification of Common Aspergillus Species, Utrecht: Centraalbureau voor Schimmelcultures, 2002.

    Google Scholar 

  19. Krauss, G.-J., Solé, M., Krauss, G., Schlosser, D., Wesenberg, D., and Bärlocher, F., Fungi in freshwaters: ecology, physiology and biochemical potential, FEMS Microbiol. Rev., 2011, vol. 35, pp. 620–651.

    Article  CAS  PubMed  Google Scholar 

  20. Kurakov, A.V., Pakhnenko, O.A., Kostina, N.V., and Umarov, M.M., Formation of nitrous oxide by microscopic fungi on nutrient media and in sterile soil, Pochvovedenie, 1997, no. 12, pp. 1497–1503.

  21. Kurakov, A.V., Lavrent’ev, R.B., and Soina, V.S., Cultural and morphological features of the growth of filamentous microscopic fungi under anaerobic conditions, Mikol. Fitopatol., 2007, vol. 41, no. 6. pp. 526–535.

    Google Scholar 

  22. Kurakov, A.V., Khidirov, K.S., Sadykova, V.S., and Zvyagintsev, D.G., Anaerobic growth ability and alcohol fermentation activity of microscopic fungi, Appl. Biochem. Microbiol., 2011, vol. 47, no. 2, pp. 169–175.

    Article  CAS  Google Scholar 

  23. Magurran, A.E., Ecological Diversity and Its Measurement, London: Chapman and Hall, 1983.

    Google Scholar 

  24. Miettinen, H., Kietavainen, R., Sohlberg, E., Numminen, M., Ahonen, L., and Itävaara, M., Microbiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland, Front. Microbiol., 2015, vol. 6, no. 1203, pp. 1–16.

    Article  Google Scholar 

  25. NFA. Livsmedelsverkets Föreskrifter om Dricksvatten, SLVFS 2001:30, Uppsala, Sweden: National Food Administration, 2001, 1st ed.

  26. Oliveira, B.R., Crespo, M.T., San Romão, M.V., Benoliel, M.J., Samson, R.A., and Pereira, V.J., New insights concerning the occurrence of fungi in water sources and their potential pathogenicity, Water Res., 2013, vol. 47, pp. 6338–6347.

    Article  CAS  PubMed  Google Scholar 

  27. Pereira, V.J., Fernandes, D., Carvalho, G., Benoliel, M.J., San Romão, M.V., and Barreto Crespo, M.T., Assessment of the presence and dynamics of fungi in drinking water sources using cultural and molecular methods, Water Res., 2010, vol. 44.

  28. Pivkin, M.V., Kuznetsova, T.A., and Sova, V.V., Morskie griby i ikh metabolity (Marine Fungi and Their Metabolites), Vladivostok: Dal’nauka, 2006.

  29. Raper, K.B. and Fennell, D.I., The Genus Aspergillus, Baltimore: Williams and Wilkins Company, 1965.

    Google Scholar 

  30. Raper, K.B., Thom, C., and Fennell, D.I., A Manual of the Penicillia, New York: Hafner Publishing Company, 1968.

    Google Scholar 

  31. Rifai, M.A., A revision on the genus Trichoderma, Mycol. Pap., 1969, vol. 116, pp. 1–56.

    Google Scholar 

  32. Sammon, N.B. and Harrower, K.M., Microfungal contamination of municipal water supplies—a review, Water, 2008, vol. 35, pp. 98–102.

    Google Scholar 

  33. Sammon, N.B., Harrower, K.M., Fabbro, L.D., and Rob, H., Reed three potential sources of microfungi in a treated municipal water supply system in sub-tropical Australia, Int. J. Environ. Res. Public Health, 2011, vol. 8, pp. 713–732.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Samson, R.A. and Houbraken, J., Phylogenetic and taxonomic studies on the genera Penicillium and Talaromyces, Stud. Mycol., 2011, vol. 70, pp. 1–183.

    PubMed  PubMed Central  Google Scholar 

  35. SanPiN 1.2.3685-21. Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya. Ofitsial’noe izdanie (Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors to Humans. Official Publication), Moscow: Standartinform, 2021.

  36. SanPiN 2.1.3684-21. Sanitarno-epidemiologicheskie trebovaniya k soderzhaniyu territorii gorodskikh i sel’skikh poselenii, k vodnym ob"ektam, pit’evoi vode i pit’evomu vodosnabzheniyu atmosfernomu vozdukhu, pochvam, zhilym pomeshcheniyam, ekspluatatsii proizvodstvennykh, obshchestvennykh pomeshch. Ofitsial’noe izdanie (Sanitary and Epidemiological Requirements for the Maintenance of Territories of Urban and Rural Settlements, for Water Bodies, Drinking Water and Drinking Water Supply to Atmospheric Air, Soil, Residential Premises, Operation of Industrial and Public Premises. Official Publication), Moscow: Standartinform, 2021.

  37. Schipper, M.A., On certain species of mucor with a key to all accepted species: 2. On the genera Rhizomucor and Parasitella, Stud. Mycol., 1978, vol. 17, pp. 1–71.

    Google Scholar 

  38. Seifert, K., Morgan-Jones, G., Gams, W., and Kendrick, B., The Genera of Hyphomycetes, CBS Biodiversity Series 9, Utrecht: CBS-KNAW Fungal Biodiversity Centre, 2011.

    Google Scholar 

  39. Shoun, H., Kim, D.H., Uchiyama, H., and Sugiyma, J., Denitrification by fungi, FEMS Microbiol. Lett., 1992, vol. 92, pp. 277–282.

    Article  Google Scholar 

  40. Sohlberg, E., Bomberg, M., Miettinen, H., Nyyssonen, M., Salavirta, H., Vikman, M., and Itavaara, M., Revealing the unexplored fungal communities in deep groundwater of crystalline bedrock fracture zones in Olkiluoto, Finland, Front. Microbiol., 2015, vol. 6, no. 573, pp. 1–11.

    Article  Google Scholar 

  41. Voronin, L.V., Opportunistic fungi in freshwater ecosystems, Yarosl. Pedagog. Vestn., Estestv. Nauki, 2013, vol. 3, no. 2, pp. 67–74.

    Google Scholar 

  42. Wurzbacher, C., Kerr, J., and Grossart, H.-P., Aquatic fungi, in The Dynamical Processes of Biodiversity: Case Studies of Evolution and Spatial Distribution, Grillo, O. and Venora, G., Eds., Rijeka: InTech, 2011, 1st ed., vol. 1, pp. 227–258.

    Google Scholar 

  43. Wurzbacher, C., Kreiling, A.-K., Svantesson, S., Den Wyngaert, S., Larsson, E., Heeger, F., Nilsson, H., and Palsson, S., Fungal communities in groundwater springs along the volcanic zone of Iceland, Inland Waters, 2020, vol. 10, no. 3, pp. 418–427.

    Article  Google Scholar 

  44. Yamaguchi, M.U., Rampazzo, R.C.P., Yamada-Ogatta, S.F., Nakamura, C.V., Ueda-Nakamura, T., and Filho, B.P.D., Yeasts and filamentous fungi in bottled mineral water and tap water from municipal supplies, Braz. Arch. Biol. Technol., 2007, vol. 50, pp. 1–9.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, agreement no. 075-15-2021-1396, the budget theme “Ecophysiology, cytology and genetics of fungi as the basis of rational nature management and biotechnologies” State Registration No. (EGISU R&D) 121032300079-4, RFBR grant (Project No. 18-29-25073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurakov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurakov, A.V., Shumakova, A.A. & Fedorova, M.D. Fungi in Groundwater Springs and Wells in Moscow Region. Biol Bull Russ Acad Sci 51, 78–90 (2024). https://doi.org/10.1134/S1062359023601908

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023601908

Keywords:

Navigation