Skip to main content
Log in

Morpho-Physiological Determinants of Potato Yield Formations under the Conditions of Moisture Deficiency and High Temperatures

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The contribution of the morpho-physiological parameters of leaves and tubers of 22 potato varieties (Solanum tuberosum L.) to the formation of yield under conditions of insufficient soil moisture and high air temperatures is studied. Discriminant analysis found that the stomata size (12%), chlorophyll content (10%), number of tubers (29%), and average tuber weight (21%) determined the gradation of plants by yield. The specific surface density of leaves (38%), the content of chlorophyll (13%) and carotenoids (13%), and the leaf area (12%) made the greatest contribution to discrimination in relation to ecological plasticity. It is concluded that the number of stomata per unit area of the leaf, the specific surface density of the leaf, and the content of photosynthetic pigments are the key characteristics that contribute to both the high yield and the adaptive capacity of potatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Alam, M.S., Islam, M.F., Rahman, M.S., Molla, M.M., Uddin, M.Z., and Mian, M.A., Varietal evaluation and selection of yield-associated traits of potato (Solanum tuberosum) using correlation and path analysis in haor area of Moulvibazar Bangladesh, J. Agric. Sci. Eng. Innov., 2020, vol. 1, no. 10, pp. 2–9.

    Google Scholar 

  2. Aliche, E.B., Oortwijn, M., Theeuwen, T.P.J.M., Bachem, C.W.B., Visser, R.G.F., and van der Linden, C.G., Drought response in field grown potatoes and the interactions between canopy growth and yield, Agric. Water Manage., 2018, vol. 206, pp. 20–30.

    Article  Google Scholar 

  3. Ashraf, M., Inducing drought tolerance in plants: recent advances, Biotechnol. Adv., 2010, vol. 28, no. 1, pp. 169–183.

    Article  CAS  PubMed  Google Scholar 

  4. Bakunov, A.L., Milekhin, A.V., Rubtsov, S.L., and Shevchenko, S.L., The content of photosynthetic pigments as an indirect sign of the resistance of potato varieties to high air temperatures and insufficient moisture, Izv. Sam. Gos. S-kh. Akad., 2020, no. 2, pp. 8–13.

  5. Cheng, T., Rivard, B., Sanchez-Azofeifa, A.G., Feret, J.-B., Jacquemoud, S., and Ustin, S.L., Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis, ISPRS J. Photogram. Rem. Sens., 2014, vol. 87, pp. 28–38.

    Article  Google Scholar 

  6. Dahal, K., Li, X.Q., Tai, H., Creelman, A., and Bizimungu, B., Improving potato stress tolerance and tuber yield under climate change scenario—a current overview, Front. Plant Sci., 2019, vol. 10, p. 563.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davydenko, O.V. and Lopukh, P.S., Influence of thermal conditions on the yield of potatoes in the administrative regions of the Republic of Belarus, Zh. Belorus. Gos. Univ., Ser. Geogr. Geol., 2019, no. 1, pp. 46–62.

  8. Deblonde, P.M.K. and Ledent, J.F., Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars, Eur. J. Agron., 2001, vol. 14, no. 1, pp. 31–41.

    Article  Google Scholar 

  9. Eberhart, S. and Russel, W., Stability parameters for comparing varieties, Crop Sci., 1966, vol. 6, no. 1, pp. 36–42.

    Article  Google Scholar 

  10. Eiasu, B.K., Soundy, P., and Hammes, P.S., Response of potato (Solanum tuberosum) tuber yield components to gelpolymer soil amendments and irrigation regimes, N. Z. J. Crop Hortic. Sci., 2007, vol. 35, no. 1, pp. 25–31.

    Article  Google Scholar 

  11. Evers, D., Lefèvre, I., Legay, S., Lamoureux, D., Hausman, J.F., Rosales, R.O., Marca, L.R.T., Hoffmann, L., Bonierbale, M., and Schafleitner, R., Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach, J. Exp. Bot., 2010, vol. 61, no. 9, pp. 2327–2343.

    Article  CAS  PubMed  Google Scholar 

  12. George, T.S., Taylor, M.A., Dodd, I.C., and White, P.J., Climate change and consequences for potato production: a review of tolerance to emerging abiotic stress, Potato Res., 2018, vol. 60, pp. 239–268.

    Article  Google Scholar 

  13. Gervais, T., Creelman, A., Li, X-Q., Bizimungu, B., De Koeye, D., and Dahal, K., Potato response to drought stress: physiological and growth basis, Front. Plant Sci., 2021, vol. 12, p. 698060.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Golovko, T.K. and Tabalenkova, G.N., Source–sink relationships in potato plants, Russ. J. Plant Physiol., 2019, vol. 66, pp. 664–672.

    Article  CAS  Google Scholar 

  15. Hijmans, R.J., The effect of climate change on global potato production, Am. J. Potato Res., 2003, vol. 80, pp. 271–279.

    Article  Google Scholar 

  16. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., and Sharma, A., The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production, App. Sci., 2020, vol. 10, no. 16, p. 5692.

    CAS  Google Scholar 

  17. Kumar, S., Asrey, A., and Mandal, G., Effect of differential irrigation regimes on potato (Solanum tuberosum) yield and post-harvest attributes, Indian J. Agric. Sci., 2007, vol. 77, no. 6, pp. 366–368.

    Google Scholar 

  18. Lawlor, D.W. and Tezara, W., Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes, Ann. Bot., 2009, vol. 103, no. 4, pp. 561–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lichtenthaler, H.K., Chlorophylls and carotenoids pigments of photosynthetic biomembranes, in Methods in Enzymology, Douse, R. and Packer, L., Eds., New York: Academic, 1987, pp. 350–382.

    Google Scholar 

  20. van Loon, C.D., The effect of water stress on potato growth, development, and yield, Am. Potato J., 1981, vol. 58, no. 1, pp. 51–69.

    Article  Google Scholar 

  21. Mahgoub, H.A.M., Eisa, G.S.A., and Youssef, M.A.H., Molecular, biochemical and anatomical analysis of some potato (Solanum tuberosum L.) cultivars growing in Egypt, J. Gen. Eng. Biotechnol., 2015, vol. 13, no. 1, pp. 39–49.

    Article  CAS  Google Scholar 

  22. Monneveux, P., Ramirez, D.A., and Pino, M.-T., Drought tolerance in potato (S. tuberosum L.). Can we learn from drought tolerance research in cereals?, Plant Sci., 2013, vol. 205, pp. 76–86.

    Article  PubMed  Google Scholar 

  23. Obidiegwu, J.E., Bryan, G.J., Jones, H.G., and Prashar, A., Coping with drought: stress and adaptive responses in potato and perspectives for improvement, Front. Plant Sci., 2015, vol. 6, pp. 1–23.

    Article  Google Scholar 

  24. Pakudin, V.Z. and Lopatina, L.M., Evaluation of ecological plasticity and stability of agricultural crop varieties, S-kh. Biol., 1984, no. 4, pp. 109–113.

  25. Parry, M.L., Rosenzweig, C., and Livermore, M., Climate change, global food supply and risk of hunger, Philos. Trans. R. Soc., B, 2005, vol. 360, no. 1463, pp. 2125–2136.

  26. Plich, J., Boguszewska-Mańkowska, D., and Marczewski, W., Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars, Potato Res., 2020, vol. 63, no. 4, pp. 463–477.

    Article  CAS  Google Scholar 

  27. Popova, L.A., Golovina, L.N., Gintov, V.V., and Shamanin, A.A., Evaluation of the adaptability of potato varieties in the conditions of the northern territories of the Arkhangelsk region, Kart. Ovoshchi, 2021, no. 1, pp. 34–37.

  28. Raymundo, R., Asseng, S., Cammarano, D., and Quiroz, R., Potato, sweet potato, and yam models for climate change: a review, Field Crops Res., 2014, vol. 166, pp. 173–185.

    Article  Google Scholar 

  29. Rowe, R.C. and Powelson, M.L., Potato early dying: management challenges in a changing production environment, Plant Dis., 2002, vol. 86, pp. 1184–1193.

    Article  PubMed  Google Scholar 

  30. Rozentsvet, O.A., Bogdanova, E.S., Nesterov, V.N., Shevchenko, S.N., Bakunov, A.L., Milekhin, A.V., and Rubtsov, S.L., Productivity and dynamics of morphological, physiological, and biochemical parameters of potatoes in arid climate, Dokl. Biol. Sci., 2021, vol. 497, pp. 65–68.

    Article  CAS  PubMed  Google Scholar 

  31. Rubtsov, S.L., Bakunov, A.L., Milekhin, A.V., and Dmitrieva, N.N., Criteria for the selection of new varieties of potatoes for the Middle Volga region, Izv. Orenburg. Gos. Agrar. Univ., 2019, no. 1(75), рр. 52–55.

  32. Schafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., and Bonierbale, M., Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis, Potato Res., 2007, vol. 50, pp. 71–85.

  33. Simakov, E.A., Sklyarova, N.P., and Yashina, I.M., Metodicheskie ukazaniya po tekhnologii selektsionnogo protsessa kartofelya (Guidelines for the Technology of the Potato Breeding Process), Moscow: Dostizheniya nauki i tekhniki APK, 2006.

  34. Zarzynska, K., Boguszewska-Mankowska, D., and Nosalewicz, A., Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress, Plant Soil Environ., 2017, vol. 63, pp. 159–164.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the Lorch Federal Potato Research Center and the creators of the S. tuberosum varieties for the seed material provided for research.

Funding

This study was carried out within the framework of the Comprehensive Research Plan “Development of Selection and Seed Production of Potatoes” and “Structure, Dynamics, and Sustainable Development of Ecosystems in the Volga Basin,” project no. 021060107217-0-1.6.19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Rozentsvet.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L.A. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakunov, A.L., Dmitrieva, N.N., Rubtsov, S.L. et al. Morpho-Physiological Determinants of Potato Yield Formations under the Conditions of Moisture Deficiency and High Temperatures. Biol Bull Russ Acad Sci 50, 457–466 (2023). https://doi.org/10.1134/S1062359022700042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022700042

Keywords:

Navigation