Skip to main content
Log in

Effect of Zn2+ Ions on Acid Nuclease Activity in Freshwater Mollusks

  • SHORT COMMUNICATIONS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The effect of increased concentrations of Zn2+ ions on the activity of the complex of acid deoxyribonucleases (DNases) and ribonucleases (RNases) of the hepatopancreas of Viviparus viviparus L. was studied. An increase in the activity of acid DNases under the influence of Zn2+ was revealed. An antisymbatic dependence of the change in the activity of acid DNases on the zinc concentration in the hepatopancreas of mollusks is observed. The character of RNase activity under the influence of Zn2+ ions is less indicative. The character of changes in the activity of acid DNases in experimental animals shows that this biochemical indicator can be used as a marker of toxic effects on living organisms in the ecological and biochemical monitoring of fresh water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Andreini, C.A. and Bertini, I., Bioinformatics view of zinc enzymes, J. Inorg. Biochem., 2012, vol. 111, pp. 150–156. https://doi.org/10.1016/j.jinorgbio.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  2. Anfinsen, C.B., Redfield, R.R., Choate, W.I., Page, J., and Carrol, W.R., Studies of cross structure, cross-linkage and terminal sequences in ribonuclease, J. Biol. Chem., 1957, vol. 207, pp. 201–210.

    Article  Google Scholar 

  3. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile: Zinc (online), 2005.

  4. Au, D.W.T., The application of histo-cytopathological biomarkers in marine pollution monitoring: a review, Mar. Poll. Bull., 2004, vol. 48, pp. 817–834. https://doi.org/10.1016/j.marpolbul.2004.02.032

    Article  CAS  Google Scholar 

  5. Australian and New Zealand Environment and Conservation Council, National Water Quality Management Strategy: an Introduction to the Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Canberra: ANZECC, 2000.

    Google Scholar 

  6. Ballatori, N., Transport of toxic metals by molecular mimicry, Environ. Health Perspect., 2002, vol. 110, pp. 689–694. https://doi.org/10.1289/ehp.02110s5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crichton, R., Zinc, Lewis acid and gene regulator, in Biological Inorganic Chemistry, 2012, 2nd ed., pp. 229–246.

  8. Droganova, T.S., Konichev, A.S., Petrenko, D.B., Polikarpova, L.V., and Tsvetkov, I.L., Influence of sodium fluoride and fluoroacetic acid on the activity of acid DNase, acid phosphatase, and the spectrum of soluble proteins of the hepatopancreas of the Viviparus viviparus, Vestn. Mosk. Gos. Obl. Univ., Ser.: Estestv. Nauki, 2017, no. 4, pp. 36–45. https://doi.org/10.18384/2310-7189-2017-4-36-45

  9. Droganova, T.S., Polikarpova, L.V., and Konichev, A.S., Protein spectra of the Viviparus viviparus liver in normal conditions and in case of intoxication with lead(II) ions, Teor. Prikl. Ekol., 2019, no. 3, pp. 109–113. https://doi.org/10.25750/1995-4301-2019-3-109-113

  10. Etxeberria, M., Sastre, I., Cajaraville, M.P., and Marigomez, I., Digestive lysosome enlargement induced by experimental exposure to metals (Cu, Cd, and Zn) in mussels collected from a zinc-polluted site, Arch. Environ. Contam. Toxicol., 1994, vol. 27, pp. 338–345. https://doi.org/10.1007/bf00213169

    Article  CAS  Google Scholar 

  11. Fafanđel, M., Bihari, N., Perić, L., and Cenov, A., Effect of marine pollutants on the acid DNase activity in the hemocytes and digestive gland of the mussel Mytilus galloprovincialis, Aquat. Toxicol., 2008, vol. 86, no. 4, pp. 508–513. https://doi.org/10.1016/j.aquatox.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  12. Gomot de Vaufleury, A., Standardized growth toxicity testing (Cu, Zn, Pb, and pentachlorophenol) with Helix aspersa, Ecotoxicol. Environ. Saf., 2000, vol. 46, pp. 41–50. https://doi.org/10.1006/eesa.1999.1872

    Article  CAS  PubMed  Google Scholar 

  13. Grabarkiewicz, J. and Davis, W., An Introduction to Freshwater Mussels as Biological Indicators: Including Accounts of Interior Basin, Cumberlandian, and Atlantic Slope Species. United States Environmental Protection Agency, 2008. https://doi.org/10.13140/2.1.3580.2405

  14. Hogstrand, C., Zinc, Homeostasis Toxicol. Essent. Met., A, 2012, vol. 31, no. 11, pp. 135–200.

    Google Scholar 

  15. Hughes, B.P. and Barritt, G.J., Inhibition of the liver cell receptor-activated Ca2+ inflow system by metal ion inhibitors of voltage-operated Ca2+ channels but not by other inhibitors of Ca2+ inflow, Biochim. Biophys. Acta, 1989, vol. 101, pp. 197–205. https://doi.org/10.1016/0167-4889(89)90135-3

    Article  Google Scholar 

  16. Ibrahim, S.A. and Mahmoud, S.A., Effect of heavy metals accumulation on enzyme activity and histology in liver of some Nile fish in Egypt, Egypt. J. Aquat. Biol. Fish., 2005, vol. 9, pp. 203–219. https://doi.org/10.21608/ejabf.2005.1824

  17. Kovačić, I., Fafanđel, M., Perić, L., and Batel, I., Effect of environmental pollutant mixtures on acid DNase activity in mussel Mytilus galloprovincialis: ex situ and in situ study, Bull. Environ. Contam. Toxicol., 2017, pp. 433–437. https://doi.org/10.1007/s00128-017-2162-y

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  19. McCall, K.A., Huang, C., and Fierke, C.A., Function and mechanism of zinc metalloenzymes, J. Nutr., 2000, vol. 130, suppl. 5S, pp. 1437–1446. https://doi.org/10.1093/jn/130.5.1437S

    Article  Google Scholar 

  20. Menzorova, N.I. and Rasskazov, V.A., Application of different test systems and biochemical indicators for environmental monitoring of the Troitsa Bay, Sea of Japan, Russ. J. Mar. Biol., 2007, vol. 33, no. 2, pp. 118–124.

    Article  CAS  Google Scholar 

  21. Nica, D.V., Bura, M., Gergen, I., Harmanescu, M., and Bordean, D.M., Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain, Chem. Cent. J., 2012, vol. 6, pp. 55–70. https://doi.org/10.1186/1752-153X-6-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oje, O.A., Uzoegwu, P.N., Onwurah, I.N., and Nwodo, U.U., Environmental pollution levels of lead and zinc in Ishiagu and Uburu communities of Ebonyi State, Nigeria, Bull. Environ. Contam. Toxicol., 2010, vol. 85, pp. 313–317. https://doi.org/10.1007/s00128-010-0082-1

    Article  CAS  PubMed  Google Scholar 

  23. Le Pabic, C., Effets du zinc sur la physiologie du stade juvénile de la seiche commune Sepia officinalis et étude du système immunitaire pour le développement d’outils in vitro, Ecotoxicologie, 2014.

    Google Scholar 

  24. Roesijadi G., Robinson W.E. Metal regulation in aquatic animals: mechanisms of uptake, accumulation, and release, in Aquatic Toxicology: Molecular, Biochemical, and Cellular Perspectives, Malins, D.C. and Ostrander, G.K., Eds., Boca Raton: Lewis Publ., 1994, pp. 387–420.

    Google Scholar 

  25. SanPiN 1.2.3685-21 “Gigienicheskie normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya” (SanPiN 1.2.3685-21 “Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans”).

  26. Sheibak, V.M., Biological significance and regulation of zinc homeostasis in mammals, Probl. Zdor. Ekol., 2016, no. 4 (50), pp. 11–16.

  27. Sigel, H., Metal Ions in Biological Systems, 2020, vol. 15.

  28. Stefanidou, M., Maravelias, C., Dona, A., and Spiliopoulou, C.M., Zinc: a multipurpose trace element, Arch. Toxicol., 2006, vol. 80, no. 1, pp. 1–9. https://doi.org/10.1007/s00204-005-0009-5

    Article  CAS  PubMed  Google Scholar 

  29. Tsvetkov, I.L. and Konichev, A.S., Ekologicheskaya biokhimiya gidrobiontov (Ecological Biochemistry of Aquatic Organisms), Moscow: MGOU, 2006.

  30. Tsvetkov, I.L., Polikarpova, L.V., and Konichev, A.S., A new method for the quantitative determination of deoxyribonuclease activity using fluorescently labeled oligonucleotides as a substrate, Vestn. MGOU, Ser. Estestv. Nauk, 2012, no. 3, pp. 46–51.

  31. Uvaeva, E.I. and Shimkovich, E.D., Bioindication value of population characteristics of Viviparus viviparus (Mollusca, Gastropoda, Viviparidae) in water bodies of Central Polesie, Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki, 2017, vol. 159, no. 3, pp. 521–530.

    Google Scholar 

  32. Wojtkowska, M., Bogacki, J., and Witeska, A., Assessment of the hazard posed by metal forms in water and sediments, Sci. Total Environ., 2016, vols. 551–552, pp. 387–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Droganova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Droganova, T.S., Polikarpova, L.V., Tishina, E.A. et al. Effect of Zn2+ Ions on Acid Nuclease Activity in Freshwater Mollusks. Biol Bull Russ Acad Sci 49, 43–47 (2022). https://doi.org/10.1134/S1062359022020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022020054

Keywords:

Navigation