Skip to main content
Log in

Analysis of Actinobiota in the Tobacco Rhizosphere with a Heterologous Choline Oxidase Gene from Arthrobacter globiformis

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Plants Nicotiana tabacum L. with the choline oxidase gene (codA) responsible for the synthesis of glycine-betaine by agrobacterial transformation were obtained. In order to identify possible environmental consequences during the cultivation of transformants, microbial complexes in the rhizosphere were studied. Soil actinomycetes were used as a bioindication group of microorganisms. The abundance, taxonomic composition, and functional structure of the rhizosphere complexes of the original Samsun variety and independent transgenic lines CodA7 and CodA17 with the different codA gene were expressed. There were no significant differences in the taxonomic structure or the occurrence of phytopathogenic fungal antagonists or cellulolytic agents in the rhizosphere of the original plants and transformants. The structure of actinomycete complexes of transformants was characterized by variability comparable in magnitude with variability due to the stress effect of the soil background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Agarwal, P.K. and Jha, B., Transcription factors in plants and ABA dependent and independent abiotic stress signaling, Biol. Plant., 2010, vol. 54, pp. 201–212.

    Article  CAS  Google Scholar 

  2. Bhatti, A.A., Haq, S., and Bhat, R.A., Actinomycetes benefaction role in soil and plant health, Microb. Pathog., 2017, vol. 111, pp. 458–467.

    Article  CAS  Google Scholar 

  3. Brookes, G. and Barfoot, P., GM Crops: Global Socio-Economic and Environmental Impacts 1996–2015, UK: PG Eeconomics LTD, 2017.

    Google Scholar 

  4. Egorov, N.S., Osnovy ucheniya ob antibiotikakh (Fundamentals of the Teaching of Antibiotics), Moscow: Nauka, 2004.

  5. Gauze, G.F., Preobrazhenskaya, T.P., Sveshnikova, M.A., Terekhova, L.P., and Maksimova, T.S., Opredelitel’ aktinomitsetov. Rody Sreptomyces, Streptoverticillium, Chainia (Keys to Actinomycetes. Genera Sreptomyces, Streptoverticillium, and Chainia), Moscow: Nauka, 1983.

  6. de Jesus Sousa, J.A. and Olivares, F.L., Plant growth promotion by Streptomycetes: ecophysiology, mechanisms and applications, Chem. Biol. Technol. Agricult., 2016, vol. 3, no. 1, p. 24.

    Article  Google Scholar 

  7. Kochetov, A.V. and Shumnyi, V.K., Transgenic plants as genetic models for studying the functions of plant genes, Vavilov. Zh. Genet. Selekts., 2016, vol. 20, no. 4, pp. 476–481.

    Google Scholar 

  8. Kremer, R.J. and Means, N.E., Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms, Eur. J. Agron., 2009, vol. 31, no. 3, pp. 153–161.

    Article  CAS  Google Scholar 

  9. Labeda, D.P., Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS Culture Collection (NRRL) using multi-locus sequence analysis, Antonie van Leeuwenhoek, 2016, vol. 109, no. 3, pp. 349–356.

    Article  Google Scholar 

  10. Labeda, D.P., Dunlap, C.A., Rong, X., Huang, Y., Doroghazi, J.R., Ju, K.S., and Metcalf, W.W., Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis, Antonie van Leeuwenhoek, 2017, vol. 110, no. 4, pp. 563–583.

    Article  CAS  Google Scholar 

  11. Ladics, G.S., Bartholomaeus, A., Bregitzer, P., Doerrer, N.G., Gray, A., Holzhauser, T., and Parrott, W., Genetic basis and detection of unintended effects in genetically modified crop plants, Transgenic Res., 2015, vol. 24, no. 4, pp. 587–603.

    Article  CAS  Google Scholar 

  12. Li, Z., Cui, J., Mi, Z., Tian, D., Wang, J., Ma, Z., and Niu, S., Responses of soil enzymatic activities to transgenic Bacillus thuringiensis (Bt) crops—a global meta-analysis, Sci. Total Environ., 2019, vol. 651, pp. 1830–1838.

    Article  CAS  Google Scholar 

  13. Meriles, J.M., Vargas Gil, S., Haro, R.J., March, G.J., and Guzman, C.A., Glyphosate and previous crop residue effect on deleterious and beneficial soil-borne fungi from a peanut-corn-soybean rotations, J. Phytopath., 2006, vol. 154, no. 5, pp. 309–316.

    Article  CAS  Google Scholar 

  14. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue culture, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  15. Oguchi, T., Kashimura, Y., Mimura, M., Yu, X., Matsunaga, E., Nanto, K., Shimada, T., Kikuchi, A., and Watanabe, K.N., A multi-year assessment of the environmental impact of transgenic eucalyptus trees harboring a bacterial choline oxidase gene on biomass, precinct vegetation and the microbial community, Transgenic Res., 2014, vol. 23, pp. 767–777.

  16. Bergey’s Manual of Determinative Bacteriology, Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T., and Williams, S.T., Eds., Baltimore: Williams and Wilkins, 1993, 9th ed.

  17. Prasad, K.V.S.K., Sharmila, P., Kumar, P.A., and Saradhi, P.P., Transformation of Brassica juncea (L.) Czern with bacterial coda gene enhances its tolerance to salt stress, Mol. Breed., 2000, vol. 6, pp. 489–499.

    Article  CAS  Google Scholar 

  18. Sakamoto, A. and Murata, N., Genetic engineering of glycine-betaine synthesis in plants: current status and implications for enhancement of stress tolerance, J. Exp. Bot., 2000, vol. 51, no. 342, pp. 81–88.

    Article  CAS  Google Scholar 

  19. Shirokikh, I.G., Zenova, G.M., and Zvyagintsev, D.G., Actinomycetes in the rhizosphere of barley grown on acid soddy podzolic soil, Microbiology, 2002, vol. 71, no. 4, pp. 455–459.

    Article  CAS  Google Scholar 

  20. Shirokikh, I.G., Shirokikh, A.A., Merzaeva, O.V., and Tumasova, M.I., Actinomycetes in the rhizosphere of red clover on a soddy-podzolic soil, Eur. Soil Sci., 2004, vol. 37, no. 7, pp. 762–768.

    Google Scholar 

  21. Singh, A.K. and Dubey, S.K., Current trends in Bt crops and their fate on associated microbial community dynamics: a review, Protoplasma, 2016, vol. 253, no. 3, pp. 663–681.

    Article  CAS  Google Scholar 

  22. Teather, R.M. and Wood, P.J., Use of Congo red–polysaccharide interaction in enumeration and characterization of cellulozalytic bacteria the bovine rumen, Appl. Environ. Microbiol., 1982, vol. 43, pp. 777–780.

    Article  CAS  Google Scholar 

  23. Tran, N.-H.T., Oguchi, T., Matsunaga, E., Kawaoka, A., Watanabe, K.N., and Kikuchi, A., Environmental risk assessment of impacts of transgenic Eucalyptus camaldulensis events highly expressing bacterial choline oxidase A gene, Plant Biotechnol., 2018, vol. 35, pp. 393–397.

    Article  CAS  Google Scholar 

  24. Turrini, A., Sbrana, C., and Giovannetti, M., Belowground environmental effects of transgenic crops: a soil microbial perspective, Res. Microbiol., 2015, vol. 166, no. 3, pp. 121–131.

    Article  Google Scholar 

  25. Viaene, T., Langendries, S., Beirinckx, S., Maes, M., and Goormachtig, S., Streptomyces as a plant’s best friend?, FEMS Microbiol. Ecol., 2016, vol. 92, no. 8, pp. 1–10. https://doi.org/10.1093/femsec/fiw119

    Article  Google Scholar 

  26. Vurukonda, S.S.K.P., Giovanardi, D., and Stefani, E., Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes, Int. J. Mol. Sci., 2018, vol. 19, no. 4, p. 952.

    Article  Google Scholar 

  27. You, L., Song, Q., Wu, Y., Li, S., Jiang, C., Chang, L., and Zhang, J., Accumulation of glycine betaine in transplastomic potato plants expressing choline oxidase confers improved drought tolerance, Planta, 2019, vol. 249, no. 6, pp. 1963–1975.

    Article  CAS  Google Scholar 

  28. Zablotowicz, R.M. and Reddy, K.N., Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean, Crop. Protect., 2007, vol. 26, pp. 370–376.

    Article  CAS  Google Scholar 

  29. Zhang, Y.J., Xie, M., and Peng, D.L., Effects of the transgenic CrylAc and CpTI insect-resistant cotton SGK321 on rhizosphere soil microorganism populations in northern China, Plant, Soil Environ., 2014, vol. 60, no. 6, pp. 285–289.

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of State Assignments (project nos. 0767-2019-0090 and 0574-2019-0002) and was supported in part by the Russian Foundation for Basic Research, project no. 19-016-00207_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Shirokikh.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokikh, I.G., Nasarova, Y.I., Raldugina, G.N. et al. Analysis of Actinobiota in the Tobacco Rhizosphere with a Heterologous Choline Oxidase Gene from Arthrobacter globiformis. Biol Bull Russ Acad Sci 49, 713–720 (2022). https://doi.org/10.1134/S1062359022010137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022010137

Keywords:

Navigation