Skip to main content
Log in

Common and Distinctive Features in the Organization of Catecholamine-Containing Systems in Gastropods and Nemerteans: Evolutionary Aspects

  • CONFERENCE MATERIALS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract—

This study provides new data on the distribution of catecholamine-containing regulatory cells and their innervation of different body parts and organs in gastropods and nemerteans. General and specific principles of the morphogenesis of catecholaminergic neuroendocrine systems are discussed. The data support the universality of some principles of their structure and functioning. The results suggest that catecholaminergic systems may participate in mechanosensory functions, locomotion and other motor actions; in the regulation of the alimentary system; in functioning of the endocrine glands associated with sexual functions; in the fulfilment of central integrative functions; and in the implementation of different types of defensive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Baratte, S. and Bonnaud, L., Evidence of early nervous differentiation and early catecholaminergic sensory system during Sepia officinalis embryogenesis, J. Comp. Neurol., 2009, vol. 517, pp. 539–549.

    Article  CAS  PubMed  Google Scholar 

  2. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Basics of Comparative Anatomy of Invertebrates), Moscow: Nauka, 1964, vol. 2.

  3. Bieger, D. and Hornykiewicz, O., Preliminary note dopamine in the earthworm, Lumbricus terreszxis: enhancement of rhythmic contractile activity, Neuropharmacology, 1972, vol. 11, pp. 745–748.

    Article  CAS  PubMed  Google Scholar 

  4. Chase, R., Lessons from snail tentacles, Chem. Sci., 1986, vol. 11, pp. 411–426.

    Google Scholar 

  5. Croll, R.P., Development of embryonic and larval cells containing serotonin, catecholamines and FMRFamide-related peptides in the gastropod mollusk Phestilla sibogae, Biol. Bull., 2006, vol. 211, pp. 232–247.

    Article  CAS  PubMed  Google Scholar 

  6. Croll, R.P., Jackson, D.L., and Voronezhskaya, E.E., Catecholamine containing cells in larval and postlarval bivalve molluscs, Biol. Bull., 1997, vol. 193, pp. 116–124.

    Article  CAS  PubMed  Google Scholar 

  7. Croll, R.P., Voronezhskaya, E.E., Hiripi, L., and Elekes, K., Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: II. postembryonic development of central and peripheral cells, J. Comp. Neurol., 1999, vol. 404, pp. 297–309.

    Article  CAS  PubMed  Google Scholar 

  8. D’yakonova, V.E., Neurotransmitter mechanisms of context-dependent behavior, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2012, vol. 62, no. 6, pp. 664–680.

    Google Scholar 

  9. Dickinson, A.J., Croll, R.P., and Voronezhskaya, E.E., Development of embryonic cells containing serotonin, catecholamines, and FMRFamide-related peptides in Aplysia californica reference, Biol. Bull., 2000, vol. 199, pp. 305–315.

    Article  CAS  PubMed  Google Scholar 

  10. Faccioni-Heuser, M.C., Zancan, D.M., and Achaval, M., Monoamines in the pedal plexis of the land snail Megalobulimus oblongus (Gastropoda, Pulmonata), Brazil. J. Med. Biol. Res., 2004, vol. 37, pp. 1043–1054.

    Article  CAS  Google Scholar 

  11. Ferraris, J.D., Putative neuroendrocrine devices in the nemertina—an overview of structure and function, Am. Zool., 1985, vol. 25, no. 1, pp. 73–85.

    Article  Google Scholar 

  12. Fominykh, M.Ya., Sensitive nerve cells in the epithelium and subepithelial connective tissue of trunk segments of polychaetes Nephthys hombergii and Harmathoe imbricata, Zh. Evol. Biokhim. Fiziol., 1982, vol. 18, no. 52, pp. 507–513.

    Google Scholar 

  13. Furness, J.B., Costa, M., and Wilson, A.J., Water-stable fluorophores, produced by reaction with aldehyde solutions, for the histochemical localization of catechol- and indolethylamines, Histochemistry, 1977, vol. 52, no. 2, pp. 159–170.

    Article  CAS  PubMed  Google Scholar 

  14. Gervais, R., Kleinfeld, D., Delaney, K.R., and Gelperin, A., Central and reflex responses elicited by odor in a terrestrial mollusk, J. Neurophysiol., 1996, vol. 76, pp. 1327–1339.

    Article  CAS  PubMed  Google Scholar 

  15. Hay-Schmidt, A., Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva of Phoronis muelleri (Phoronida), Cell Tiss. Res., 1990, vol. 259, no. 1, pp. 105–118.

    Article  Google Scholar 

  16. Janse, C., A neurophysiological study of the peripheral tactile system of the pond snail Lymnaea stagnalis L., Neth. J. Zool., 1974, vol. 24, pp. 93–161.

    Article  Google Scholar 

  17. Joffe, B.I. and Kotikova, E.F., Distribution of catecholamines in turbellarians (with a discussion of neuronal homologues in the Platyhelminthes), Studies Neurosci., 1991, no. 13, pp. 77–112.

  18. Markosova, T.G., Zaitseva, O.V., and Smirnov, R.V., Monoamine- and peptide- containing elements in the nemertine digestive tract, J. Evol. Biochem. Physiol., 2007, vol. 43, no. 1, pp. 69–79.

    Article  CAS  Google Scholar 

  19. Ovsyannikov, V.I., Neiromediatory i gormony v zheludochno-kishechnom trakte (Neurotransmitters and Hormones in the Gastrointestinal Tract), St. Petersburg: FIN RAN, 2005.

  20. Pushchina, E.V., Tyrosine hydroxylase in telencephalon and diencephalon of Rhodeus sericeus (Cyprinidae), Tsitologiia, 2009, vol. 51, no. 1, pp. 63–77.

    CAS  PubMed  Google Scholar 

  21. Sakharov, D.A., Genealogiya neironov (Genealogy of Neurons), Moscow: Nauka, 1974.

  22. Schlawny, A., Hamann, T., Miiller, M.A., and Pfannenstiel, H.D., The catecholaminergic system of an annelid (Ophryotrocha puerilis, Polychaeta), Cell Tiss. Res., 1991, vol. 265, pp. 175–184.

    Article  CAS  Google Scholar 

  23. Shunkina, K.V., Zaitseva, O.V., Starunov, V.V., and Ostrovsky, A.N., Sensory elements and innervation in the freshwater bryozoan Cristatella mucedo lophophore, Dokl. Biol. Sci., 2014, vol. 455, pp. 125–128.

    Article  CAS  PubMed  Google Scholar 

  24. Shuvalova, N.E. and Zaitseva, O.V., Morphological features and responses of neurons in the right parietal ganglion of Lymnaea stagnalis to stimulation of sensory structures, J. Evol. Biochem. Physiol., 1988, vol. 24, no. 5, pp. 538–543.

    Google Scholar 

  25. Smith, S.A., Nason, J., and Croll, R.P., Distribution of catecholamines in the sea scallop, Placopecten magellanicus, Can. J. Zool., 1998, vol. 76, pp. 1254–1262.

    Article  CAS  Google Scholar 

  26. Solon, M.H. and Koopowitz, H., Neuromuscular control systems in the proboscis of Paranemertes peregrina, Mar. Freshwater Behav. Physiol., 1981, vol. 7, pp. 331–343.

    Article  Google Scholar 

  27. Suzuki, H., Kimura, T., Sekiguchi, T., and Mizukami, A., FMRFamide-like-immunoreactive primary sensory neurons in the olfactory system of the terrestrial mollusc, Limax marginatus, Cell Tiss. Res., 1997, vol. 289, no. 2, pp. 339–345.

    Article  CAS  Google Scholar 

  28. De la Torre, J.C. and Surgeon, J.W., A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method, Histochemistry, 1976, vol. 49, no. 2, pp. 81–93.

    Article  CAS  Google Scholar 

  29. Voronezhskaya, E.E., Hiripi, L., Elekes, K., and Croll, R.P., Development of catecholaminergic neurons in the pond snail, Lymnaea stagnalis: I. Embryonic development of dopamine-containing neurons and dopamine-dependent behaviors, J. Comp. Neurol., 1999, vol. 404, no. 3, pp. 285–296.

    Article  CAS  PubMed  Google Scholar 

  30. Welsh, J.H. and Williams, L.D., Monoamine-containing neurons in Planaria, J. Comp. Neurol., 2004, vol. 138, pp. 103–116.

    Article  Google Scholar 

  31. Wreford, N.G.M., Singhaniyom, W., and Smith, G.C., Microspectrofluorometric characterization of the fluorescent derivatives of biogenic amines produced by aqueous aldehyde (Faglu) fixation, Histochem. J., 1982, vol. 14, no. 3, pp. 491–505.

    Article  CAS  PubMed  Google Scholar 

  32. Wyeth, R.C. and Croll, R.P., Peripheral sensory cells in the cephalic sensory organs of Lymnaea stagnalis, J. Comp. Neurol., 2011, vol. 519, pp. 1893–1913.

    Article  Google Scholar 

  33. Zaitseva, O.V., Innervation of the integument of Pulmonata, Neurosci. Behav. Physiol., 1984, vol. 78, no. 5, pp. 23–29.

    Article  Google Scholar 

  34. Zaitseva, O.V., Structural organization of the tentacular sensory system in land pulmonates, Studies Neurosci., 1991, no. 13, pp. 238–258.

  35. Zaitseva, O.V., Structural organization of sensory systems of the snail, Neurosci. Behav. Physiol., 1994, vol. 24, no. 1, pp. 47–57.

    Article  CAS  PubMed  Google Scholar 

  36. Zaitseva, O.V., Structural organization receptor elements and organs of the land mollusks Pomatias elegans (Prosobranchia), Neurosci. Behav. Physiol., 1997, vol. 27, no. 5, pp. 533–540.

    Article  CAS  PubMed  Google Scholar 

  37. Zaitseva, O.V., Structure of sensory organs and skin innervation in the mollusc Pomacea paludosa, Prosobranchia, J. Evol. Biochem. Physiol, 1998, vol. 34, no. 3, pp. 233–242.

    Google Scholar 

  38. Zaitseva, O.V., Principles of the structural organization of the chemosensory systems of freshwater gastropod mollusks, Neurosci. Bechav. Physiol., 1999, vol. 29, no. 5, pp. 581–593.

    Article  CAS  Google Scholar 

  39. Zaitseva, O.V., Dominant structural and functional adaptations of distant chemosensory systems in phylogenesis of Gastropoda, Ross. Fiziol. Zh. im. I.M. Sechenova, 2000, vol. 86, no. 8, pp. 995–1006.

    CAS  PubMed  Google Scholar 

  40. Zaitseva, O.V., Comparative study of nerve elements and their relationships with endocrine glands and muscle retractors in ommatophores of snails and slugs, J. Evol. Biochem. Physiol., 2004, vol. 40, no. 6, pp. 683–697.

    Article  Google Scholar 

  41. Zaitseva, O.V., Nerve cells in the digestive tract epithelium of gastropods, Dokl. Biol. Sci., 2006, vol. 408, pp. 220–222.

    Article  CAS  PubMed  Google Scholar 

  42. Zaitseva, O.V., Stability, variability, and parallelisms in the development of distant sensory systems: olfactory and visual systems in the phylogeny and ontogeny of gastropods, Biol. Bull., 2016, vol. 43, no. 3, pp. 195–207.

    Article  Google Scholar 

  43. Zaitseva, O.V. and Bocharova, L.S., Sensory cells in the head skin of pond snails. Fine structure of sensory endings, Cell Tiss. Res., 1981, vol. 220, pp. 797–807.

    Article  Google Scholar 

  44. Zaitseva, O.V. and Kuznetsova, T.V., Distribution of acetylcholinesterase activity in the digestive system of the gastropod molluscs Littorina littorea and Achatina fulica, Morfologiya, 2008, vol. 133, no. 1, pp. 55–59.

    CAS  Google Scholar 

  45. Zaitseva, O.V. and Markosova, T.G., Choline acetyltransferase and NADPH-diaphorase activity in the nervous system and receptor organs of nemerteans, Dokl. Biol. Sci., 2009, vol. 428, no. 5, pp. 710–712.

    Article  Google Scholar 

  46. Zaitseva, O.V. and Petrov, S.A., Biogenic amines in the nervous system of nemerteans, Dokl. Biol. Sci. Gen. Biol., 2013, vol. 451, pp. 228–230.

    Article  CAS  Google Scholar 

  47. Zaitseva, O.V. and Shumeev, A.N., Distribution of monoamines and neuropeptides in the digestive system of juvenile Cadlina laevis (Nudibranchia), Invertebr. Zool., 2017, vol. 14, no. 2, pp. 226–233.

    Article  Google Scholar 

  48. Zaitseva, O.V., Kovalev, V.A., and Shuvalova, N.E., Morpho-functional study of the central sections of the chemosensory system in head tentacles of the pond snail Lymnaea stagnalis, J. Evol. Biochem. Physiol., 1987, vol. 23, no. 3, pp. 220–226.

    Google Scholar 

  49. Zaitseva, O.V., Kovalev, V.V., and Shuvalova, N.E., Study of specific damage to chemoreceptor processes in behavioral search reactions of model objects affected by different doses of main classes of toxicants, Sensory Systems, 1993, vol. 7, no. 1, pp. 58–62.

    Google Scholar 

  50. Zaitseva, O.V., Marcosova, T.G., Smirnov, R.V., and Soboleva, V.V., Investigation of cell composition of the intestinal nervous system in gastropods, nemertins and priapulids, Proc. Zool. Inst. Russ. Acad. Sci. St. Petersburg, 2004. V. 300. P. 171–180.

    Google Scholar 

  51. Zaitseva, O.V., Markosova, T.G., and Smirnov, R.V., Monoamine- and peptide-containing elements in the body wall and nervous cords in nemerteans, Biol. Morya, 2007, vol. 33, no. 4, pp. 291–298.

    Google Scholar 

  52. Zaitseva, O.V., Kuznetsova, T.V., and Markosova, T.G., NADPH-diaphorase activity in the digestive system of gastropod mollusks Achatina fulica and Littorina littorea, J. Evol. Biochem. Physiol., 2009, vol. 45, no. 1, pp. 110–121.

    Article  CAS  Google Scholar 

  53. Zaitseva, O.V., Shumeev, A.N., Korshunova, T.A., and Martynov, A.V., Heterochronies in the formation of the nervous and digestive systems in early postlarval development of opisthobranch mollusks: organization of major organ systems of the arctic dorid Cadlina laevis, Biol. Bull., 2015, vol. 42, no. 3, pp. 186–195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Zaitseva.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, O.V., Shumeev, A.N. & Petrov, S.A. Common and Distinctive Features in the Organization of Catecholamine-Containing Systems in Gastropods and Nemerteans: Evolutionary Aspects. Biol Bull Russ Acad Sci 46, 3–13 (2019). https://doi.org/10.1134/S1062359019010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019010126

Navigation