Skip to main content
Log in

Assessing the Efficiency of Rapid Methods for Evaluating Selectivity and Analytical Signal Strength in Various Fluorescent Phases

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The results of evaluating the adsorption and fluorescent properties of azolotriazine compounds and phases based on cadmium sulfide quantum dots in vapors of volatile organic compounds (biomarkers of living systems) are considered. The adsorption properties of phases based on organic dyes and encapsulated semiconductors towards vapors of alcohols, ketones, amines, acids, ammonia, and aldehydes are investigated using direct high-sensitivity piezoelectric quartz microweighing. The spectral properties and their variations in analyte vapors are investigated using various spectroscopy methods (absorption, photoluminescence). The research results are compared, and the potential for optimizing this stage is assessed. It is proposed to evaluate the consistency of methods for predicting changes in fluorescent properties in test systems for volatile organic compounds using the Kendall coefficient of concordance, W. The highest level of agreement (W = 0.89) was observed between the methods of spectrofluorimetry and direct vapor microweighing upon adsorption on phases being potential fillers of test systems. A correlation between the results obtained by different fluorescence methods (visual plate test systems and fluorimetry of phases on paper substrates) is 0.80, which confirms a high degree of consistency in assessments using them in the degree of interaction between the analytes and organic, combined fluorochromes. The methods closely related in the nature of the analytical response do not exhibit better agreement than the method of direct vapor microweighing on microphases of fluorimetric reagents of different nature (cadmium sulfide quantum dots/chitosan, organic azolotriazine compounds, mixed phases). This, in turn, enables the selection of simpler, more available, and more rapid methods and means of analysis in routine experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Drummen, G.P., Molecules, 2012, no. 12, p. 14067. https://doi.org/10.3390/molecules171214067

  2. Willmann, J.K., Bruggen, N.V., Dinkelborg, L.M., and Gambhir, S.S., Nat. Rev. Drug Discovery, 2008, vol. 7, p. 591.

    Article  CAS  PubMed  Google Scholar 

  3. Atreya, R. and Goetz, M., Nat. Rev. Gastroenterol. Hepatol., 2013, vol. 10, p. 704.

    Article  PubMed  Google Scholar 

  4. Carter, K.P., Young, A.M., and Palmer, A.E., Chem. Rev., 2014, vol. 114, p. 4564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, Z., Park, S., Yoon, J., and Shin, I., Chem. Soc. Rev., 2014, vol. 43, p. 16.

    Article  PubMed  Google Scholar 

  6. Martyno,v V.I., Pakhomov, A.A., Popova, N.V., Deev, I.E., and Petrenko, A.G., Acta Nat., 2016, vol. 8, no. 4, p. 37.

  7. Zlotina, M.M., Emel’yanov, V.V., and Chirkova, T.V., Vestn. St. Petersb. Gos. Univ., Ser. 3, 2011, no. 2, p. 100.

  8. Yan, Y., Zhu, S., Chen, Z., and Ji, Y., J. Appl. Spectrosc., 2022, vol. 89, no. 1, p. 191.

    Article  CAS  Google Scholar 

  9. Liu, Y., Feng, X., Yu, Y., Zhao, Q., Tang, C., and Zhang, J., Anal. Chim. Acta, 2020, vol. 1110, p. 141. https://doi.org/10.1016/j.aca.2020.03.027

    Article  CAS  PubMed  Google Scholar 

  10. Wang, F., Yang, X., Zhan, Q., and Nandi, C.K., Front. Chem., 2021, vol. 9, p. 698531. https://doi.org/10.3389/fchem.2021.698531

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y., Gao, F., Wang, Y., Li, H., Zhang, J., Sun, Z., and Jiang, Y., Molecules, 2022, vol. 27, p. 8421. https://doi.org/10.3390/molecules27238421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie, C., Luo, K., Tan, L., Yang, Q., Zhao, X., and Zhou, L., Molecules, 2022, vol. 27, p. 8842. https://doi.org/10.3390/molecules27248842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, L., Ran, X., Tang, H., and Cao, D., Dyes Pigm., 2021, vol. 194. https://doi.org/10.1016/j.dyepig.2021.109634

  14. Dou, W.T., Han, H.H., Sedgwick, A.C., Zhu, G.B., Zang, Y., Yang, X.R., Yoon, J., James, T.D., Li, J., and He, X., Sci. Bull., 2022, vol. 67, p. 853. https://doi.org/10.1016/j.scib.2022.01.014

    Article  CAS  Google Scholar 

  15. Georgiev, N.I., Bakov, V.V., Anichina, K.K., and Bojinov, V.B., Pharmaceuticals, 2023, vol. 16, p. 381. https://doi.org/10.3390/ph16030381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, J., Jangili, P., Son, S., Ji, M.S., Won, M., and Kim, J.S., Adv. Mater., 2020, vol. 32, no. 51. https://doi.org/10.1002/adma.202001945

  17. Zhou, W., Guo, H., Lin, J., and Yang, F., J. Iran. Chem. Soc., 2018, vol. 15, p. 2559.

    Article  CAS  Google Scholar 

  18. Padalkar, V.S., Patil, V.S., and Sekar, N., Chem. Cent. J., 2011, vol. 5, p. 77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Irannejad, H., Amini, M., Khodagholi, F., Ansari, N., Tusi, S.K., Sharifzadeh, M., and Shafiee, A., Bioorg. Med. Chem., 2010, vol. 15, p. 4224.

    Article  Google Scholar 

  20. Ivashchenko, A.V., Lazareva, V.T., Prudnikova, E.K., Ivashchenko, S.P., and Rumyantsev, V.G., Chem. Heterocycl. Compd., 1982, vol. 18, p. 185.

    Article  Google Scholar 

  21. Sun, X., Liu, T., Sun, J., and Wang, X., RSC Adv., 2020, vol. 10, no. 18, p. 10826. https://doi.org/10.1039/c9ra10290f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iftikhar, R., Parveen, I., Mazhar, A., Iqbal, M.S., Kamal, G.M., Hafeez, F., Pang, A.L., and Ahmadipour, M., J. Environ. Chem. Eng., 2023, vol. 11, no. 1, p. 109030. https://doi.org/10.1016/j.jece.2022.109030

    Article  CAS  Google Scholar 

  23. Yinyin, B., Chemosensors, 2021, vol. 9, p. 308. https://doi.org/10.3390/chemosensors9110308

    Article  Google Scholar 

  24. Jeong, H., Shin, H., Lee, J., Kim, B., Park, Y.I., Yook, K.S., and Park, J., J. Photonics Energy, 2015, vol. 5, no. 1, p. 057608. https://doi.org/10.1117/1.jpe.5.057608

    Article  Google Scholar 

  25. https://hmdb.ca/metabolites. Accessed May 22, 2023.

  26. https://math.semestr.ru/corel/concordance.php. Accessed May 28, 2023.

  27. Novikova, L.B. and Kuchmenko, T.A., Vestn. Voronezh. Gos. Univ. Inzh. Tekhnol., 2019, vol. 81, no. 3, p. 236. https://doi.org/10.20914/2310-1202-2019-3-236-241

    Article  Google Scholar 

  28. Vandyshev, D.Yu., Mangusheva, D.A., Potapov, A.Yu., Shikhaliev, Kh.S., Kuchmenko, T.A., Skorikov, V.N., Umarkhanov, R.U., and Mikhalev, V.I., Puti i formy sovershenstvovaniya farmatsevticheskogo obrazovaniya. Aktual’nye voprosy razrabotki i issledovaniya novykh lekarstvennykh sredstv: sbornik trudov 8-i Mezhdunarodnoi nauchno-metodicheskoi konferentsii “Farmobrazovanie-2022” (Ways and Forms of Improving Pharmaceutical Education. Current Issues in the Development and Research of New Drugs: Proc. 8th Int. Sci. Methodol. Conf. “Pharmaceutical Education 2022”), Voronezh, 2022, p. 74.

  29. Ayad Mohamad, M., Abdelghafar Mona, E., Torad Nagy, L., Yamauchi, Yu., and Amer Wael, A., Chemosphere, 2023, vol. 312, no. 1, p. 137031. https://doi.org/10.1016/j.chemosphere.2022.137031

    Article  CAS  PubMed  Google Scholar 

  30. Ding, L., Ruan, Y., Li, T., Huang, J., Warren-Smith, S.C., Ebendorff-Heidepriem, H., and Monro, T.M., Sens. Actuators, B, 2018, vol. 273, no. 10, p. 9.

    Article  CAS  Google Scholar 

Download references

Funding

The synthesis and investigation of organic reagents were supported by a grant of the President of the Russian Federation for the State Support of Young Russian Scientists—Candidates of Sciences (project no. MK-4978.2022.1.3). The synthesis and investigation of cadmium sulfide quantum dots and phases based on it were supported by the Russian Science Foundation (grant no. 23-23-00609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kuchmenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchmenko, T.A., Vandyshev, D.Y., Yagov, V.V. et al. Assessing the Efficiency of Rapid Methods for Evaluating Selectivity and Analytical Signal Strength in Various Fluorescent Phases. J Anal Chem 79, 614–627 (2024). https://doi.org/10.1134/S106193482405006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482405006X

Keywords:

Navigation