Skip to main content
Log in

The \({\text{NH}}_{4}^{ + }\)(H2O) Reagent Ion: Mechanism of Increasing the Specificity of Ion Mobility Spectrometry Based Devices for Toxic Substances Detection in the Presence of Alkanes

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In toxic substance detection devices based on ion mobility spectrometry with atmospheric pressure chemical ionization, hydrated ammonium \({\text{NH}}_{4}^{ + }\)(H2O)n is increasingly used as a reagent ion instead of the commonly used hydrated hydroxonium H3O+(H2O)n ion and ions preceding and accompanying its formation. The use of hydrated ammonium makes it possible to increase the specificity of devices in the presence of such problematic interferences as exhaust gases of internal combustion engines and motor fuel vapors. In this paper, the mechanism of increasing specificity in the presence of alkanes, significantly predominant in these interferences, is justified. In the absence of ammonia, which is used to produce hydrated ammonium, the chemical ionization of alkanes occurs as a result of fast exergonic reactions with ions preceding (\({\text{O}}_{2}^{{ + \bullet }}\), \({\text{N}}_{2}^{{ + \bullet }}\), \({\text{N}}_{4}^{{ + \bullet }}\), H2O+\(^{\bullet }\), and H3O+) and accompanying (NO+ and NO+(H2O)) the formation of hydrated hydroxonium. When ammonia is added, these ions react with it and are almost completely consumed in fast exergonic reactions. Thereby ammonia suppresses the chemical ionization of alkanes by precursor and accompanying ions. The direct chemical ionization of alkanes with the help of hydrated ammonium does not occur due to the endergonicity of the reactions and the almost complete shift of their equilibrium towards the formation of the initial reagents. As a result, the devices do not give false-positive signals when exposed to alkanes. In addition, the devices do not produce false-negative signals when analytes are detected in a mixture with alkanes, since hydrated ammonium is practically not consumed in reactions with alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Eiceman, G.A., Karpas, Z., and Hill, H.H., Jr., Ion Mobility Spectrometry, Boca Raton, FL: CRC, 2013, 3rd ed.

    Book  Google Scholar 

  2. Markov, V.A., Bashirov, R.M., and Gabitov, I.I., Toksichnost’ otrabotavshikh gazov dizeley (Toxicity of Exhaust Gases of Diesel Engines), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2002.

  3. Speight, J.G., The Chemistry and Technology of Petroleum, Boca Raton, FL: CRC, 2014, 5th ed.

    Book  Google Scholar 

  4. Cherepitsa, S.V., Bychkov, S.M., Kovalenko, A.N., Mazanik, A.L., Makoed, N.M., Gremyako, N.N., Kuzmenkov, D.E., and Luchinina, Ya.L., in Fundamental’nye i prikladnye fizicheskie issledovaniya, 2002–2009 gg. (Fundamental and Applied Physical Research, 2002–2009), Baryshevskii, V.G., Ed., Minsk: Beloruss. Gos. Univ., 2009, p. 392.

  5. Chebotarev, P.A., Vestn. St. Petersb. Gos. Med. Akad., 2005, vol. 6, no. 1, p. 203.

    Google Scholar 

  6. Borsdorf, H., Schelhorn, H., Flachowsky, J., et al., Anal. Chim. Acta, 2000, vol. 403, nos. 1–2, p. 235.

    Article  CAS  Google Scholar 

  7. Marotta, E. and Paradisi, C., J. Am. Soc. Mass Spectrom., 2009, vol. 20, no. 4, p. 697.

    Article  CAS  PubMed  Google Scholar 

  8. Manheim, J.M., Milton, J.R., Zhang, Y., et al., Anal. Chem., 2020, vol. 92, no. 13, p. 8883.

    Article  CAS  PubMed  Google Scholar 

  9. Baranoski, J.M. and Longworth, T.L., Domestic Preparedness Program Evaluation of the RAID-M (Bruker Saxonia Analytik GmbH Rapid Alarm and Identification Device-Monitor) against Chemical Warfare Agents, Summary Report, Aberdeen, 2003. https://www.hsdl.org/?view&did=451711. Accessed May 15, 2022.

  10. Tornes, J.A., Int. J. Ion Mobility Spectrom., 2016, vol. 19, nos. 2–3, p. 105.

    Article  Google Scholar 

  11. Ewing, R.G., Waltman, M.J., and Atkinson, D.A., Anal. Chem., 2011, vol. 83, no. 12, p. 4838.

    Article  CAS  PubMed  Google Scholar 

  12. Valadbeigi, Y., Bayat, S., and Ilbeigi, V., Anal. Chem., 2020, vol. 92, no. 11, p. 7924.

    Article  CAS  PubMed  Google Scholar 

  13. Mahmoudabadi, M., Abedini, E., Zahedi, H., et al., Int. J. Ion Mobility Spectrom., 2018, vol. 21, nos. 1–2, p. 11.

    Article  CAS  Google Scholar 

  14. Khademi, S.M.S., Telgheder, U., Valadbeigi, Y., et al., Int. J. Mass Spectrom., 2019, vol. 442, p. 29.

    Article  Google Scholar 

  15. Valadbeigi, Y., Ilbeigi, V., Michalczuk, B., et al., J. Phys. Chem. A, 2019, vol. 123, no. 1, p. 313.

    Article  CAS  PubMed  Google Scholar 

  16. Sheibani, A., Tabrizchi, M., and Ghaziaskar, H.S., Talanta, 2008, vol. 75, no. 1, p. 233.

    CAS  PubMed  Google Scholar 

  17. Granovsky, A.A., Firefly, version 8.0.1. http://classic.chem.msu. su/gran/firefly/index.html. Accessed July 15, 2014.

  18. Lebedev, A.V., Mass-Spektrom., 2018, vol. 15, no. 3, p. 172. [J. Anal. Chem. 2019. vol. 74, no. 13, p. 1325.]

    Google Scholar 

  19. Lebedev, A.V., Mass-Spektrom., 2019, vol. 16, no. 3, p. 191. [J. Anal. Chem. 2020. vol. 75, no. 13, p. 1719.]

    Google Scholar 

  20. Lebedev, A.V., Mass-Spektrom., 2020, vol. 17, no. 2, p. 122. [J. Anal. Chem. 2021. vol. 76, no. 13, p. 1538.]

    Google Scholar 

  21. Lebedev, A.V. and Kolbinev, S.S., Mass-Spektrom., 2021, vol. 18, no. 3, p. 197. [J. Anal. Chem. 2022. vol. 77, no. 14, p. 1770.]

    Google Scholar 

  22. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  23. Karton, A., Tarnopolsky, A., Lamere, J.-F., et al., J. Phys. Chem. A, 2008, vol. 112, no. 50, p. 12868.

    Article  CAS  PubMed  Google Scholar 

  24. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, no. 4, p. 553.

    Article  CAS  ADS  Google Scholar 

  25. Xantheas, S.S., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8821.

    Article  CAS  ADS  Google Scholar 

  26. Kozole, J., Tomlinson-Phillips, J., Stairs, J.R., et al., Talanta, 2012, vol. 99, p. 799.

    Article  CAS  PubMed  Google Scholar 

  27. Keith, T.A., AIMAll, version 19.10.12. http://aim.tkgristmill. com. Accessed July 10, 2022.

  28. Akhmetov, A.F., Imasheva, M.U., and Korzhova, L.F., Bashkir. Khim. Zh., 2012, vol. 19, no. 4, p. 61.

    CAS  Google Scholar 

  29. Drugov, Yu.S. and Rodin, A.A., Ekologicheskie analizy pri razlivakh nefti i nefteproduktov (Environmental Analyzes for Oil Spills and Oil Products), Moscow: BI-NOM. Laboratoriya Znaniy, 2015.

  30. Ion/Molecule Attachment Reactions: Mass Spectrometry, Fujii, T., Ed., New York: Springer, 2015.

    Google Scholar 

  31. Bennett, S.L. and Field, F.H., J. Am. Chem. Soc., 1972, vol. 94, no. 18, p. 6305.

    Article  CAS  Google Scholar 

  32. Deakyne, C.A. and Meot-Ner (Mautner), M., J. Am. Chem. Soc., 1985, vol. 107, no. 2, p. 474.

    Article  Google Scholar 

  33. Zaytsev, A., Breitenlechner, M., Koss, A.R., et al., Atmos. Meas. Tech., 2019, vol. 12, no. 3, p. 1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunter, E.P.L. and Lias, S.G., J. Phys. Chem. Ref. Data, 1998, vol. 27, no. 3, p. 413.

    Article  CAS  ADS  Google Scholar 

  35. Bouchoux, G., Salpin, J.Y., and Leblanc, D., Int. J. Mass Spectrom. Ion Processes, 1996, vol. 153, no. 1, p. 37.

    Article  CAS  ADS  Google Scholar 

  36. Bohme, D.K., in Ionic Processes in the Gas Phase, Almoster Ferreira, M.A., Ed., Dordrecht: Springer, 1984.

    Google Scholar 

  37. Sohn, H. and Steinhanses, J., Int. J. Ion Mobility Spectrom., 1998, vol. 1, no. 1, p. 54.

    Google Scholar 

  38. Smith, J.N., Noll, R.J., and Cooks, R.G., Rapid Commun. Mass Spectrom., 2011, vol. 25, no. 10, p. 1437.

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Seto, Y., Sekiguchi, H., Maruko, H., et al., Anal. Chem., 2014, vol. 86, no. 9, p. 4316.

    Article  CAS  PubMed  Google Scholar 

  40. Borsdorf, H. and Neitsch, K., Int. J. Ion Mobility Spectrom., 2009, vol. 12, no. 2, p. 39.

    Article  CAS  Google Scholar 

  41. Gas Detection by Ion Mobility Spectrometry: Prospectus of the I.U.T., Berlin: Inst. Umwelttechnol.

  42. Cohen, M.J. and Karasek, F.W., J. Chromatogr. Sci., 1970, vol. 8, no. 6, p. 330.

    Article  CAS  Google Scholar 

  43. Churchill, G.B., Dombrowski, J.P., Ma, L., et al., J. Mol. Struct., 2010, vol. 978, nos. 1–3, p. 11.

    Article  CAS  ADS  Google Scholar 

  44. Koch, U. and Popelier, P.L.A., J. Phys. Chem., 1995, vol. 99, no. 24, p. 9747.

    Article  CAS  Google Scholar 

  45. Desiraju, G.R. and Steiner, T., The Weak Hydrogen Bond, New York: Oxford Univ. Press, 1999.

    Google Scholar 

  46. Ewing, R.G., Eiceman, G.A., Harden, C.S., et al., Int. J. Mass Spectrom., 2006, vols. 255–256, p. 76.

    Article  Google Scholar 

  47. Španěl, P. and Smith, D., Int. J. Mass Spectrom. Ion Processes, 1998, vol. 181, nos. 1–3, p. 1.

    Article  Google Scholar 

  48. Arnold, S.T., Viggiano, A.A., and Morris, R.A., J. Phys. Chem. A, 1998, vol. 102, no. 45, p. 8881.

    Article  CAS  Google Scholar 

  49. Byrd, J.N., Bartlett, R.J., and Montgomery, J.A., J. Phys. Chem. A, 2014, vol. 118, no. 9, p. 1706.

    Article  CAS  PubMed  Google Scholar 

  50. Lüttschwager, N.O.B., Wassermann, T.N., Mata, R.A., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 1, p. 463.

    Article  PubMed  Google Scholar 

  51. Španěl, P. and Smith, D., J. Phys. Chem., 1995, vol. 99, no. 42, p. 15551.

    Article  Google Scholar 

  52. Eiceman, G.A. and Karpas, Z., Ion Mobility Spectrometry, Boca Raton, FL: CRC, 2005, 2nd ed.

    Book  Google Scholar 

  53. Matsuoka, S. and Ikezoe, Y., J. Phys. Chem., 1988, vol. 92, no. 5, p. 1126.

    Article  CAS  Google Scholar 

  54. Arnold, S.T., Viggiano, A.A., and Morris, R.A., J. Phys. Chem. A, 1997, vol. 101, no. 49, p. 9351.

    Article  CAS  Google Scholar 

  55. Kojiro, D.R., Cohen, M.J., Stimac, R.M., et al., Anal. Chem., 1991, vol. 63, no. 20, p. 2295.

    Article  CAS  PubMed  Google Scholar 

  56. Bell, S.E., Ewing, R.G., and Eiceman, G.A., J. Am. Soc. Mass Spectrom., 1994, vol. 5, no. 3, p. 177.

    Article  CAS  PubMed  Google Scholar 

  57. Karasek, F.W. and Denney, D.W., Anal. Chem., 1974, vol. 46, no. 6, p. 633.

    Article  CAS  Google Scholar 

  58. Karasek, F.W., Denney, D.W., and DeDecker, E.H., Anal. Chem., 1974, vol. 46, no. 8, p. 970.

    Article  CAS  Google Scholar 

  59. Kebarle, P., Searles, S.K., Zolla, A., et al., J. Am. Chem. Soc., 1967, vol. 89, no. 25, p. 6393.

    Article  CAS  Google Scholar 

  60. Hammam, E., Lee, E.P.F., and Dyke, J.M., J. Chem. Phys. A, 2001, vol. 105, no. 23, p. 5528.

    Article  CAS  Google Scholar 

  61. Smith, D., Wang, T., and Španěl, P., Int. J. Mass Spectrom., 2003, vol. 230, no. 1, p. 1.

    Article  CAS  Google Scholar 

  62. NIST Chemistry WebBook, NIST Standard Reference Database no. 69, Linstrom, P.J. and Mallard, W.G., Eds., Gaithersburg, MD: Natl. Inst. Stand. Technol., 2022. http://webbook.nist.gov. Accessed August 15, 2022.

  63. Anicich, V.G., An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics, JPL Publ. 03-19, Pasadena: NASA, 2003.

  64. Kim, S.H. and Spangler, G.E.,in Instrumentation for Trace Organic Monitoring, Clement, R.E., Hill, H.H., Jr., and Su, K.W.M., Eds., Boca Raton: CRC, 1992, p. 65.

    Google Scholar 

  65. Španěl, P. and Smith, D., Int. J. Mass Spectrom., 1998, vol. 176, no. 3, p. 203.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Rykova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V., Kolbinev, S.S. The \({\text{NH}}_{4}^{ + }\)(H2O) Reagent Ion: Mechanism of Increasing the Specificity of Ion Mobility Spectrometry Based Devices for Toxic Substances Detection in the Presence of Alkanes. J Anal Chem 78, 1955–1968 (2023). https://doi.org/10.1134/S1061934823140046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823140046

Keywords:

Navigation