Skip to main content
Log in

A Novel Biological, Environmental, and Food Micro-Amount Slurry Samples Injection Technique for Simultaneous Quantification of Metals Using a Microwave Induced Plasma Optical Emission Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A new discontinuous sample introduction system for simultaneous multi-elemental quantification of Ba, Cd, Cu, Mn, Pb, Sr, and Zn in micro-slurries (SS) by microwave induced plasma optical emission spectrometry (MIP OES) has been described in this study. This method enables a rapid and direct (without prior sample decomposition) discontinuous injection of 10 µL of slurries into the plasma discharge. The small, concise portion of the sample was introduced at high pumping speed using a discrete micro-sample introduction system (DMIS) of slurries and pneumatic nebulizers (PN) for MIP OES detection. A direct sample injection of a 10 µL portion from a microsampling device using Babington-type pneumatic nebulizers, working at 1.2 mL/min pump speed, combined with miniaturized spray chamber was employed for efficient slurry transport to the plasma excitation source. The parameters of the suspension formation (concentration, stabilization), the injection system (volume, pumping speed) and the spectrometer operation have been optimized by the single variable and simplex methods. Analytical parameters (detection limits, absolute detection limits and precision of the DMIS-SS-PN-MIP OES arrangement were assessed for all tested elements and compared with a continues micro-nebulization assembly. The proposed method was successfully used for above the simultaneous determination of mentioned elements in four certified reference materials and four real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Matusiewicz, H., Appl. Spectrosc., 2003, vol. 38, p. 263.

    Article  CAS  Google Scholar 

  2. Mora, J., Maestre, S., Hernandis, V., and Todolí, J.L., TrAC, Trends Anal. Chem., 2003, vol. 22, p. 123.

    Article  CAS  Google Scholar 

  3. Todolí, J.L. and Mermet, J.M., Spectrochim. Acta, Part B, 2006, vol. 61, p. 239.

    Article  Google Scholar 

  4. Todolí, J.L. and Mermet, J.M., Can. J. Anal. Sci. Spectrosc., 2002, vol. 47, p. 164.

    Google Scholar 

  5. Donati, G.L., Amais, R.S., and Williams C.B., J. Anal. At. Spectrom., 2017, vol. 32, p. 1283.

    Article  CAS  Google Scholar 

  6. Todolí, J.L. and Mermet, J.M., J. Anal. At. Spectrom., 2003, vol. 18, p. 1185.

    Article  Google Scholar 

  7. Cairns, W.R.L., Barbante, C., Capodaglio, G., Cescon, P., Gambaro, A., and Eastgate, A., J. Anal. At. Spectrom., 2004, vol. 19, p. 286.

    Article  CAS  Google Scholar 

  8. Ślachciński, M., J. Anal. At. Spectrom., 2019, vol. 34, p. 257.

    Article  Google Scholar 

  9. Jankowski, K. and Reszke, E., Microwave-Induced Plasma Analytical Spectrometry, Cambridge: R. Soc. Chem., 2011.

    Google Scholar 

  10. Balaram, V., Microchem. J., 2020, vol. 159, p. 105483.

    Article  CAS  Google Scholar 

  11. Sreenivasulu, V., Dharmendra, V., Balaram, V., Rao, C.N., Krishnaiah, A., Zhengxu, H., and Zhen, Z., Appl. Sci., 2017, vol. 7, p. 1.

    Google Scholar 

  12. Pasias, I.N., Rousis, N.I., Psoma, A.K., and Thomaidis, N.S., At. Spectrosc., 2021, vol. 42, p. 310.

    CAS  Google Scholar 

  13. Oliveira, S.S., Ribeiro, V.S., Almeida, T.S., and Araujo, R.G.O., Spectrochim. Acta, Part B, 2020, vol. 171, p. 105938.

    Article  CAS  Google Scholar 

  14. Hu, K., Li, P., Yang, S., and Wen, X., J. Anal. At. Spectrom., 2020, vol. 35, p. 526.

    Article  CAS  Google Scholar 

  15. Santos Silva, A., Brandão, G.C., Ferreira, S.L.C., and Pinto dos Santos, A.M., Anal. Lett., 2021, vol. 55, p. 1192.

    Article  Google Scholar 

  16. Anunciação, T.A., de Carvalho, W.C., Korn, M.G.A., Almeida, J.S. Dantas, A.F., and Teixeira, L.S.G., Food Chem., 2021, vol. 365, p. 130474.

    Article  PubMed  Google Scholar 

  17. Ślachciński, M., Talanta, 2016, vol. 161, p. 812.

    Article  PubMed  Google Scholar 

  18. Changzhi, S., Guo, W., Lanlan, J., and Shenghong, H., RSC Adv., 2020, vol. 10, p. 42993.

    Article  Google Scholar 

  19. Andrew, K.S. and Beauchemin, D., J. Anal. At. Spectrom., 2021, vol. 36, p. 2051.

    Article  Google Scholar 

  20. Cui, H., Guo, W., Jin, L., Peng, Y., and Hu, S., J. Anal. At. Spectrom., 2020, vol. 35, p. 592.

    Article  CAS  Google Scholar 

  21. Mora, J., Maestre, S., Hernandis, V., and Todolí, J.L., TrAC, Trends Anal. Chem., 2003, vol. 22, p. 123.

    Article  CAS  Google Scholar 

  22. Todolí, J.L. and Mermet, J.M., Spectrochim. Acta, Part B, 2006, vol. 61, p. 239.

    Article  Google Scholar 

  23. Todolí, J.L. and Mermet, J.M., Can. J. Anal. Sci. Spectrosc., 2002, vol. 47, p. 164.

    Google Scholar 

  24. Canals, A., Hernandis, V., and Browner, R.F., J. Anal. At. Spectrom., 1990, vol. 5, p. 61.

    Article  CAS  Google Scholar 

  25. Todolí, J.L. and Mermet, J.M., J. Anal. At. Spectrom., 2003, vol. 18, p. 1185.

    Article  Google Scholar 

  26. Cairns, W.R.L., Barbante, C., Capodaglio, G., Cescon, P. Gambaro, A., and Eastgate, A., J. Anal. At. Spectrom., 2004, vol. 19, p. 286.

    Article  CAS  Google Scholar 

  27. Janeda, M. and Ślachciński, M., Anal. Biochem., 2023, vol. 670, p. 115129.

    Article  CAS  PubMed  Google Scholar 

  28. Beenakker, C.J.M., Spectrochim. Acta, Part B, 1976, vol. 31, p. 483.

    Article  Google Scholar 

  29. Matusiewicz, H. and Ślachciński, M., Spectrosc. Lett., 2014, vol. 47, p. 415.

    Article  CAS  Google Scholar 

  30. Quillfeldt, W., Fresenius’ J. Anal. Chem., 1991, vol. 340, p. 459.

    Article  CAS  Google Scholar 

  31. Matusiewicz, H., Chem. Anal., 1995, vol. 40, p. 667.

    Google Scholar 

  32. Matusiewicz, H., Int. Lab., 1983, vol. 22, p. 24.

    Google Scholar 

  33. Matusiewicz, H., Spectrochim. Acta, Part B, 2002, vol. 57, p. 485.

    Article  Google Scholar 

  34. Canals, A. and Aguirre, M.A., Roles of nebulizers in analytical chemistry, in Encyclopedia of Analytical Chemistry, New York: Wiley, 2015.

    Google Scholar 

  35. Ślachciński, M., Multinebulizers, in Analytical Nebulizers: Fundamentals and Applications, Elsevier, Amsterdam, 2023.

    Google Scholar 

  36. Olesik, J.W., Kinzer, J.A., and Harkleroad, B., Anal. Chem., 1994, vol. 66, p. 2022.

    Article  CAS  Google Scholar 

  37. Sharp, B.L., J. Anal. At. Spectrom., 1988, vol. 3, p. 939.

    Article  Google Scholar 

  38. Maestre, S., Mora, J., Todolí, J.L., and Canals, A., J. Anal. At. Spectrom., 1999, vol. 14, p. 61.

    Article  CAS  Google Scholar 

  39. Todolí, J.L., Maestre, S. Mora, J., Canals, A., and Hernandis, V., Fresenius’ J. Anal. Chem., 2000, vol. 368, p. 773.

    PubMed  Google Scholar 

  40. Gañán-Calvo, A.M., Phys. Rev. Lett., 1998, vol. 80, p. 285.

    Article  Google Scholar 

Download references

Funding

This work was supported the Polish Ministry of Education and Science. However, the funding had no role in the design, experimental work, interpretation, and publication of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Ślachciński.

Ethics declarations

The authors of this work declare that they have no competing interests.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janeda, M., Pawłowski, P. & Ślachciński, M. A Novel Biological, Environmental, and Food Micro-Amount Slurry Samples Injection Technique for Simultaneous Quantification of Metals Using a Microwave Induced Plasma Optical Emission Spectrometry. J Anal Chem 78, 1741–1751 (2023). https://doi.org/10.1134/S1061934823120079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823120079

Keywords:

Navigation