Skip to main content
Log in

Determination of Methane Dissolved in Water Using Metal-Oxide Sensors

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The method for the determination of dissolved methane in water using the system based on a tubular selective membrane permeable to volatile organic substances and impermeable to liquid water is proposed. Purified air is passed through the membrane tube immersed in water. The air inside the tube is saturated with methane dissolved in water, which diffuses through the tube wall. Methane concentration is measured in the air passing through the membrane tube using a semiconductor metal oxide sensor. The sensitivity threshold and the response time of the system are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Kogan, V.T., Antonov, A.S., Lebedev, D.S., Vlasov, S.A., and Krasnyuk, A.D., Tech. Phys., 2013, vol. 83, no. 3, p. 132.

    Google Scholar 

  2. Kogan, V.T., Lebedev, D.S., Pavlov, A.K., Chichagov, Yu.V., and Antonov, A.S., Instrum. Exp. Tech., 2011, vol. 54, no. 3, p. 390.

    Article  CAS  Google Scholar 

  3. Kampbell, D.H. and Vandegrift, S.A., J. Chromatogr. Sci., 1998, vol. 36, no. 5, p. 253.

    Article  CAS  PubMed  Google Scholar 

  4. Drozdova, S., Ritter, W., Lendl, B., and Rosenberg, E., Fuel, 2013, vol. 113, p. 527.

    Article  CAS  Google Scholar 

  5. Lu, W., Chou, I.M., and Burruss, R.C., Geochim. Cosmochim. Acta, 2008, vol. 72, no. 2, p. 412.

    Article  CAS  Google Scholar 

  6. Gonzalez-Valencia, R., Magana-Rodriguez, F., Gerardo-Nieto, O., Sepulveda-Jauregui, A., Martinez-Cruz, K., Walter, A.K., Baer, D., and Thalasso, F., Environ. Sci. Technol., 2014, vol. 48, no. 19, p. 11421.

    Article  CAS  PubMed  Google Scholar 

  7. Boulart, C., Mowlem, M.C., Connelly, D.P., Dutasta, J.P., and German, C.R., Opt. Express, 2008, vol. 16, no. 17, p. 12607.

    Article  CAS  PubMed  Google Scholar 

  8. Cadena-Pereda, R.O., Rivera-Muñoz, E.M., Herrera-Ruiz, G., Gomez-Melendez, D.J., and Anaya-Rivera, E.K., Sensors, 2012, vol. 12, no. 8, p. 10742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamieniak, J., Randviir, E.P., and Banks, C.E., TrAC, Trends Anal. Chem., 2015, vol. 73, p. 146.

    Article  CAS  Google Scholar 

  10. Kazachenko, V.P., Rogachev, A.V., and Yablokov, M.Yu., Russ. J. Phys. Chem., 2002, vol. 76, no. 11, p. 1898.

    Google Scholar 

  11. Vasiliev, A., Pavelko, R., Gogish-Klushin, S., Kharitonov, D., Gogish-Klushina, O., Pisliakov, A., Sokolov, A., Samotaev, N., Guarnieri, V., Zen, M., and Lorenzelli, L., in Sensors for Environment, Health and Security, Baraton, M.-I., Ed. Berlin: Springer, 2009, p. 205.

    Google Scholar 

  12. Kravets, L.I., Gilman, A.B., Yablokov, M.Yu., Shchegolikhin, A.N., Mitu, B., and Dinescu, G., High Temp. Mater. Processes, 2015, vol. 19, p. 121.

    Article  Google Scholar 

  13. Kravets, L.I., Yablokov, M.Yu., Gilman, A.B., Shchegolikhin, A.N., Mitu, B., and Dinescu, G., High Energy Chemistry, 2015, vol. 49, no. 5, p. 367.

    Article  CAS  Google Scholar 

  14. Kravets, L., Gainutdinov, R., Gilman, A., Yablokov, M., Satulu, V., Mitu, B., and Dinescu, G., Plasma Phys. Technol., 2018, vol. 5, p. 110.

    Article  Google Scholar 

  15. Kravets, L.I., Gilman, A.B., Yablokov, M.Yu., Altynov, V.A., and Zagonenko, V.F., J. Phys.: Conf. Ser., 2018, vol. 982, p. 012010.

    Google Scholar 

  16. Kravets, L., Yarmolenko, M., Gainutdinov, R., Yablokov, M., Altynov, V., and Lizunov, N., High Temp. Mater. Processes, 2020, vol. 24, no. 4, p. 239.

    Article  Google Scholar 

  17. Kravets, L.I., Gil’man, A.B., Yablokov, M.Yu., Altynov, V.A., and Orelovich, O.L., High Energy Chem., 2016, vol. 50, no. 6, p. 460.

    Article  CAS  Google Scholar 

  18. Vasiliev, A.A., Yablokov, M.Y., and Sokolov, A.V., Prototype system for the detection of volatile hydrocarbons in water, Proceedings, 2018, vol. 2, p. 734.

    Google Scholar 

  19. Haynes, W.M., Lide, D.R., and Bruno, T.J., CRC Handbook of Chemistry and Physics, Boca Raton: CRC, 2017.

    Google Scholar 

Download references

Funding

This work was supported in part by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences. The experiments were carried out using the equipment of the Center for Collective Use of the Federal Research Center “Crystallography and Photonics”. The work was financially supported in part by the Ministry of Science and Higher Education of the Russian Federation, Contract FFSM-2021-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Yablokov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yablokov, M.Y., Vasiliev, A.A., Gainutdinov, R.V. et al. Determination of Methane Dissolved in Water Using Metal-Oxide Sensors. J Anal Chem 78, 385–389 (2023). https://doi.org/10.1134/S1061934823020156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823020156

Keywords:

Navigation