Skip to main content
Log in

The \({\text{NH}}_{4}^{ + }\)(H2O)n Reagent Ion: Calculations of the Structure, Thermodynamic Parameters of Hydration, Equilibrium Composition, and Mobility

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Considerable interest in the study of the \({\text{NH}}_{4}^{ + }\)(H2O)n reagent ion is due to its successful application in ion mobility spectrometry and chemical ionization mass spectrometry. In this work, we obtained calculated data on the structure and properties of \({\text{NH}}_{4}^{ + }\)(H2O)n ions (n = 0–4), which are necessary for studying the chemical ionization regularities, predicting and interpreting ion mobility spectra and mass spectra. We computed the structure and refined the isomeric composition of \({\text{NH}}_{4}^{ + }\)(H2O)n ions using quantum chemical methods. The most complete set of isomers for n = 3 and 4 (7 and 23 isomers, respectively) was revealed. It was found that the most stable \({\text{NH}}_{4}^{ + }\)(H2O)n isomers are characterized by a branched non-cyclic structure with an \({\text{NH}}_{4}^{ + }\) core and the maximal number of NH…O ionic hydrogen bonds. The thermodynamic parameters of hydration reactions for the most stable \({\text{NH}}_{4}^{ + }\)(H2O)n (n = 0–3) isomers were computed. The calculation accuracy achieved is comparable to the error of the experimental determination of the thermodynamic parameters. We computed the composition of the reagent ion for typical experimental conditions.The calculations showed that the reagent ion is represented by \({\text{NH}}_{4}^{ + }\)(H2O)n (n = 0–2) ions. Using the structural data found and data on the composition of the reagent ion, we calculated its reduced mobility by the trajectory method with two different algorithms. The calculated reduced mobilities agree with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Mahmoudabadi, M., Abedini, E., Zahedi, H., et al., Int. J. Ion Mobility Spectrom., 2018, vol. 21, nos. 1–2, p. 11.

    Article  CAS  Google Scholar 

  2. Khademi, S.M.S., Telgheder, U., Valadbeigi, Y., et al., Int. J. Mass Spectrom., 2019, vol. 442, p. 29.

    Article  Google Scholar 

  3. Liao, S. and Liang, X., Int. J. Ion Mobility Spectrom., 2020, vol. 23, no. 2, p. 97.

    Article  CAS  Google Scholar 

  4. Bahrami, H., Farajmand, B., and Lakmehsari, M.S., Int. J. Mass Spectrom., 2018, vol. 430, p. 110.

    Article  CAS  Google Scholar 

  5. Tozihi, M., Bahrami, H., Farajmand, B., et al., Int. J. Mass Spectrom., 2020, vol. 448, 116272.

    Article  CAS  Google Scholar 

  6. Valadbeigi, Y., Ilbeigi, V., and Mirsharifi, M.S., J. Mass Spectrom., 2020, vol. 55, no. 10.

  7. Valadbeigi, Y., Azizmohammadi, S., and Ilbeigi, V., J. Phys. Chem. A, 2020, vol. 124, no. 17, p. 3386.

    Article  CAS  PubMed  Google Scholar 

  8. Satoh, T., Kishi, S., Nagashima, H., et al., Anal. Chim. Acta, 2015, vol. 865, p. 39.

    Article  CAS  PubMed  Google Scholar 

  9. Forbes, T.P. and Najarro, M., Analyst, 2016, vol. 141, no. 14, p. 4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ewing, R.G., Waltman, M.J., and Atkinson, D.A., Anal. Chem., 2011, vol. 83, no. 12, p. 4838.

    Article  CAS  PubMed  Google Scholar 

  11. Tomlinson-Phillips, J., Wooten, A., Kozole, J., et al., Talanta, 2014, vol. 127, p. 152.

    Article  CAS  PubMed  Google Scholar 

  12. Zaytsev, A., Breitenlechner, M., Koss, A.R., et al., Atmos. Meas. Tech., 2019, vol. 12, no. 3, p. 1861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, T., Zhou, W., Jin, W., et al., J. Mass Spectrom., 2013, vol. 48, no. 6, p. 669.

    Article  CAS  PubMed  Google Scholar 

  14. Song, L., Chuah, W.C., Lu, X., et al., J. Am. Soc. Mass Spectrom., 2018, vol. 29, no. 4, p. 640.

    Article  CAS  PubMed  Google Scholar 

  15. Pu, J., Dai, J., He, F., et al., J. Am. Soc. Mass Spectrom., 2020, vol. 31, no. 3, p. 752.

    Article  CAS  PubMed  Google Scholar 

  16. Valadbeigi, Y., Bayat, S., and Ilbeigi, V., Anal. Chem., 2020, vol. 92, no. 11, p. 7924.

    Article  CAS  PubMed  Google Scholar 

  17. Sheibani, A., Tabrizchi, M., and Ghaziaskar, H.S., Talanta, 2008, vol. 75, no. 1, p. 233.

    CAS  PubMed  Google Scholar 

  18. Crofton, M.W. and Oka, T., J. Chem. Phys., 1987, vol. 86, no. 11, p. 5983.

    Article  CAS  Google Scholar 

  19. Han, H., Song, H., Li, J., et al., J. Phys. Chem. A, 2015, vol. 119, no. 14, p. 3400.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y.-S., Chang, H.-C., Jiang, J.-C., et al., J. Am. Chem. Soc., 1998, vol. 120, no. 34, p. 8777.

    Article  CAS  Google Scholar 

  21. Chang, H.-C., Wang, Y.-S., Lee, Y.T., et al., Int. J. Mass Spectrom., 1998, vols. 179–180, p. 91.

    Article  Google Scholar 

  22. Pankewitz, T., Lagutschenkov, A., Niedner-Schatteburg, G., et al., J. Chem. Phys., 2007, vol. 126, no. 7, 074307.

    Article  PubMed  Google Scholar 

  23. Lin, C.-K., Shishido, R., Huang, Q.-R., Fujii, A., et al., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 38, p. 22035.

    Article  CAS  PubMed  Google Scholar 

  24. Deakyne, C.A., J. Phys. Chem., 1986, vol. 90, no. 25, p. 6625.

    Article  CAS  Google Scholar 

  25. Kassab, E., Evleth, E.M., and Hamou-Tahra, Z.D., J. Am. Chem. Soc., 1990, vol. 112, no. 1, p. 103.

    Article  CAS  Google Scholar 

  26. Jiang, J.C., Chang, H.-C., Lee, Y.T., et al., J. Phys. Chem. A, 1999, vol. 103, no. 16, p. 3123.

    Article  CAS  Google Scholar 

  27. Lee, H.M., Tarakeshwar, P., Park, J., et al., J. Phys. Chem. A, 2004, vol. 108, no. 15, p. 2949.

    Article  CAS  Google Scholar 

  28. Pickard IV, F.C., Dunn, M.E., and Shields, G.C., J. Phys. Chem. A, 2005, vol. 109, no. 22, p. 4905.

    Article  CAS  PubMed  Google Scholar 

  29. Karthikeyan, S., Singh, J.N., Park, M., et al., J. Chem. Phys., 2008, vol. 128, no. 24, 244304.

    Article  CAS  PubMed  Google Scholar 

  30. Douady, J., Calvo, F., and Spiegelman, F., J. Chem. Phys., 2008, vol. 129, no. 15, 154305.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, Y.-L., Meot-Ner (Mautner), M., and Gonzalez, C., J. Phys. Chem. A, 2009, vol. 113, no. 12, p. 2967.

    Article  CAS  PubMed  Google Scholar 

  32. Morrell, T.E. and Shields, G.C., J. Phys. Chem. A, 2010, vol. 114, no. 2, p. 4266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pei, S.-T., Jiang, S., Liu, Y.-R., et al., J. Phys. Chem. A, 2015, vol. 119, no. 12, p. 3035.

    Article  CAS  PubMed  Google Scholar 

  34. Singh, G., Verma, R., Wagle, S., et al., Mol. Phys., 2017, vol. 115, nos. 21–22, p. 2708.

    Article  CAS  Google Scholar 

  35. Valadbeigi, Y., Ilbeigi, V., Michalczuk, B., et al., J. Phys. Chem. A, 2019, vol. 123, no. 1, p. 313.

    Article  CAS  PubMed  Google Scholar 

  36. Izadi, Z., Tabrizchi, M., Borsdorf, H., et al., Anal. Chem. 2019, vol. 91, no. 24, p. 15932.

    Article  CAS  PubMed  Google Scholar 

  37. Lin, C.-K., Huang, Q.-R., and Kuo, J.-L., Phys. Chem. Chem. Phys., 2020, vol. 22, no. 41, p. 24059.

    Article  CAS  PubMed  Google Scholar 

  38. Kuwahata, K. and Tachikawa, M., Bull. Chem. Soc. Jpn., 2020, vol. 93, no. 12, p. 1558.

    Article  CAS  Google Scholar 

  39. Payzant, J.D., Cunningham, A.J., and Kebarle, P., Can. J. Chem., 1973, vol. 51, no. 19, p. 3242.

    Article  CAS  Google Scholar 

  40. Meot-Ner (Mautner), M., J. Am. Chem. Soc. 1984, vol. 106, no. 5, p. 1265.

    Google Scholar 

  41. Banic, C.M. and Iribarne, J.V., J. Chem. Phys., 1985, vol. 83, no. 12, p. 6432.

    Article  CAS  Google Scholar 

  42. Meot-Ner (Mautner), M. and Speller, C.V., J. Phys. Chem., 1986, vol. 90, no. 25, p. 6616.

    Google Scholar 

  43. Kim, S.H. and Spangler, G.E., in Instrumentation for Trace Organic Monitoring, Clement, R.E., Hill, H.H., Jr., and Su, K.W.M., Eds., Boca Raton: CRC, 2018, chapter 5, p. 65.

    Google Scholar 

  44. Carroll, D.I., Dzidic, I., Stillwell, R.N., et al., Anal. Chem., 1975, vol. 47, no. 12, p. 1956.

    Article  CAS  Google Scholar 

  45. Kim, S.H., Betty, K.R., and Karasek, F.W., Anal. Chem., 1978, vol. 50, no. 14, p. 2006.

    Article  CAS  Google Scholar 

  46. Spangler, G.E., Int. J. Mass Spectrom., 2001, vol. 208, nos. 1–3, p. 169.

    Article  CAS  Google Scholar 

  47. Eiceman, G.A., Nazarov, E.G., Rodriguez, J.E., et al., Int. J. Ion Mobility Spectrom., 1998, vol. 1, no. 1, p. 28.

    Article  CAS  Google Scholar 

  48. Lebedev, A.V., Mass-Spektrom., 2018, vol. 15, no. 3, p. 172.

    Google Scholar 

  49. Granovsky, A.A., Firefly, version 8.0.1. http://classic.msu.su/gran/firefly/index.html. Accessed July 15, 2014.

  50. Lebedev, A.V., Mass-Spektrom., 2019, vol. 16, no. 3, p. 191.

    Google Scholar 

  51. Lebedev, A.V., Mass-Spektrom., 2020, vol. 17, no. 2, p. 122.

    Google Scholar 

  52. Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.

    Article  CAS  PubMed  Google Scholar 

  53. Karton, A., Tarnopolsky, A., Lamere, J.-F., et al., J. Phys. Chem. A, 2008, vol. 112, no. 50, p. 12868.

    Article  CAS  PubMed  Google Scholar 

  54. Boys, S.F. and Bernardi, F., Mol. Phys., 1970, vol. 19, no. 4, p. 553.

    Article  CAS  Google Scholar 

  55. Xantheas, S.S., J. Chem. Phys., 1996, vol. 104, no. 21, p. 8821.

    Article  CAS  Google Scholar 

  56. Kebarle, P., Searles, S.K., Zolla, A., et al., J. Am. Chem. Soc., 1967, vol. 89, no. 25, p. 6393.

    Article  CAS  Google Scholar 

  57. Lewars, E.G., Computational Chemistry, Dordrecht: Springer, 2011, 2nd ed.

    Book  Google Scholar 

  58. Larriba, C. and Hogan, C.J., J. Phys. Chem. A, 2013, vol. 117, no. 19, p. 3887.

    Article  CAS  PubMed  Google Scholar 

  59. Larriba, C. and Hogan, C.J., J. Comp. Phys., 2013, vol. 251, p. 344.

    Article  CAS  Google Scholar 

  60. Ouyang, H., Larriba-Andaluz, C., Oberreit, D., et al., J. Am. Soc. Mass Spectrom., 2013, vol. 24, no. 12, p. 1833.

    Article  CAS  PubMed  Google Scholar 

  61. Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., et al., J. Phys. Chem., 1996, vol. 100, no. 40, p. 16082.

    Article  CAS  Google Scholar 

  62. Takaya, K., Kaneko, T., Tanuma, H., et al., Int. J. Ion Mobility Spectrom., 2016, vol. 19, no. 4, p. 227.

    Article  CAS  Google Scholar 

  63. Wu, T., Derrick, J., Nahin, M., et al., J. Chem. Phys., 2018, vol. 148, no. 7, 074102.

    Article  PubMed  Google Scholar 

  64. Hoy, A.R. and Bunker, P.R., J. Mol. Spectrosc., 1979, vol. 74, no. 1, p. 1.

    Article  CAS  Google Scholar 

  65. Lane, J.R., J. Chem. Theory Comput., 2013, vol. 9, no. 1, p. 316.

    Article  CAS  PubMed  Google Scholar 

  66. Hauck, B.C., Harden, C.S., and McHugh, V.M., Int. J. Ion Mobility Spectrom., 2018, vol. 21, no. 4, p. 105.

    Article  CAS  Google Scholar 

  67. Fernandez-Maestre, R., Int. J. Mass Spectrom., 2017, vol. 421, p. 8.

    Article  CAS  Google Scholar 

Download references

Funding

The work had no sponsor support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V., Kolbinev, S.S. The \({\text{NH}}_{4}^{ + }\)(H2O)n Reagent Ion: Calculations of the Structure, Thermodynamic Parameters of Hydration, Equilibrium Composition, and Mobility. J Anal Chem 77, 1770–1783 (2022). https://doi.org/10.1134/S1061934822140039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822140039

Keywords:

Navigation