Skip to main content
Log in

The Role of GC-EI-MS and Derivatization in the Detection of New Psychoactive Substances Exemplified by 49 Synthetic Cathinones

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Synthetic cathinones (SC) continue to represent the second largest group of substances on the drug market among new psychoactive substances (NPS). They have gained their fame mainly due to their amphetamine-like effects. The European Monitoring Centre for Drugs and Drug Addiction currently monitors over 830 NPS among which 156 are synthetic cathinone derivatives. The constant introduction of new derivatives often makes their identification in the examined evidence much more difficult. This is most often caused by the presence of isomers within the same group of substances as well as SC with similar chemical structures. Gas chromatography coupled to electron ionization mass spectrometry (GC-EI-MS) is the gold standard in their toxicological analysis. The aim of this study was to analyze 49 certified NPS standards from the SC group in the parent form and/or acetyl or trimethylsilyl derivatives by GC-EI-MS and to characterize their electron mass spectra. Additionally, an integrated application with the MassHunter software was used to create an authors’ library of SC including such parameters as retention times and mass spectra. The developed method allowed to achieve chromatographic separation of derivatives within a given group of positional isomers and SC with similar chemical structures. In the case of chloromethcathinone isomers, trimethylsilylation was necessary to achieve complete separation of these derivatives. The analysis of mass spectra of acetyl derivatives of SC allowed for their classification depending on the presence of characteristic m/z values. The obtained data allowed for the development of an automated library of mass spectra of these compounds with application potential for the purposes of forensic toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. European Drug Report 2021: Trends and Developments, Luxembourg: European Monitoring Centre for Drugs and Drug Addiction, 2021. https://www.emcdda.europa.eu/publications/edr/trends-developments/2021_en. Accessed June 15, 2021.

  2. Kelly, J.P., Drug Test. Anal., 2013, vol. 3, p. 439.

    Article  Google Scholar 

  3. May, M.C., Pavone, D.C., and Lurie, I.S., J. Sep. Sci., 2020, vol. 43, p. 3756.

    Article  CAS  Google Scholar 

  4. Silva, B., Fernandes, C., Tiritan, M.E., Pinto, M.M., Valente, M.J., Carvalho, M., de Pinho, P.G., and Remião, F., Forensic Toxicol., 2016, vol. 34, p. 372.

    Article  CAS  Google Scholar 

  5. Mohr, S., Taschwer, M., and Schmid, M.G., Chirality, 2012, vol. 24, no. 6, p. 486.

    Article  CAS  Google Scholar 

  6. Wang, D., Chen, X., Ming, Z., Jiang, L., and Zhou, Y., Separations, 2022, vol. 9, no. 3.

  7. Westphal, F. and Junge, T., Forensic Sci. Int., 2012, vol. 223, p. 97.

    Article  CAS  Google Scholar 

  8. Helfer, A.G., Turcant, A., Boels, D., Ferec, S., Lelièvre, B., Welter, J., Meyer, M.R., and Maurer, H.H., Drug Test. Anal., 2015, vol. 7, p. 368.

    Article  CAS  Google Scholar 

  9. Merola, G., Fu, H., Tagliaro, F., Macchia, T., and McCord, B.R., Electrophoresis, 2014, vol. 35, p. 3231.

    Article  CAS  Google Scholar 

  10. Schmid, M.G. and Hägele, J.S., J. Chromatogr. A, 2020, vol. 1624, 461256.

    Article  CAS  Google Scholar 

  11. Pascual-Caro, S., Borrull, F., Calull, M., and Aguilar, C., J. Anal. Toxicol., 2021, vol. 45, no. 7, p. 693.

    Article  CAS  Google Scholar 

  12. Concheiro, M., Anizan, S., Ellefsen, K., and Huestis, M.A., Anal. Bioanal. Chem., 2013, vol. 405, no. 29, p. 9437.

    Article  CAS  Google Scholar 

  13. Lau, T., Concheiro, M., and Cooper, G., J. Anal. Toxicol., 2020, vol. 44, no. 7, p. 679.

    Article  CAS  Google Scholar 

  14. Power, J.D., McGlynn, P., Clarke, K., McDermott, S.D., Kavanagh, P., and O’Brien, J., Forensic Sci. Int., 2012, vol. 212, p. 6.

    Article  Google Scholar 

  15. Kavanagh, P., O’Brien, J., Fox, J., O’Donnell, C., Christie, R., Power, J.D., and McDermott, S.D., Forensic Sci. Int., 2012, vol. 216, p. 19.

    Article  CAS  Google Scholar 

  16. Mohamed, K.M. and Bakdash, A., Anal. Chem. Insights, 2017, vol. 12, p. 1.

    Article  Google Scholar 

  17. Alsenedi, K.A. and Morrison, C., Anal. Methods, 2017, vol. 9, p. 2732.

    Article  CAS  Google Scholar 

  18. Kohyama, E., Chikumoto, T., Tada, H., Kitaichi, K., Horiuchi, T., and Ito, T., Anal. Sci., 2016, vol. 32, p. 831.

    Article  CAS  Google Scholar 

  19. Meyer, M.R., Vollmar, C., Schwaninger, A.E., Wolf, E.U., and Maurer, H.H., J. Mass Spectrom., 2012, vol. 47, p. 253.

    Article  CAS  Google Scholar 

  20. Bakdash, A., Open Chem., 2019, vol. 17, p. 902.

    Article  CAS  Google Scholar 

  21. Zuba, D., TrAC, Trends Anal. Chem., 2012, vol. 32, p. 15.

    Article  CAS  Google Scholar 

  22. Abiedalla, Y., DeRuiter, J., Abdel-Hay, K.M., and Randall Clark, C., Forensic Chem., 2016, vol. 2, p. 46.

    Article  CAS  Google Scholar 

  23. Levitas, M.P., Andrews, E., Lurie, I., and Marginean, I., Forensic Sci. Int., 2018, vol. 288, p. 107.

    Article  CAS  Google Scholar 

  24. Kranenburg, R.F., Verduin, J., Stuyver, L.I., de Ridder, R., van Beek, A., Colmsee, E., and van Asten, A.C., Forensic Chem., 2020, vol. 20, 100273.

    Article  CAS  Google Scholar 

  25. Cayman Spectral Library. https://www.caymanchem.com/forensics/publications/csl. Accessed March 16, 2022.

  26. Meyer, M.R., Wilhelm, J., Peters, F.T., and Maurer, H.H., Anal. Bioanal. Chem., 2010, vol. 397, p. 1225.

    Article  CAS  Google Scholar 

  27. Maurer, H.H., Pfleger, K., Weber, A.A., Mass Spectral Library of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites, New York: Wiley, 2016, 5th ed.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Synowiec.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Synowiec, K., Rojek, S., Maciów-Głąb, M. et al. The Role of GC-EI-MS and Derivatization in the Detection of New Psychoactive Substances Exemplified by 49 Synthetic Cathinones. J Anal Chem 77, 1315–1324 (2022). https://doi.org/10.1134/S106193482210015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106193482210015X

Keywords:

Navigation