Skip to main content
Log in

Opportunities for Mercuric Ion Spectrophotometric Determination based on Reduction of Gold Nanoparticles Aggregation by N-containing Cyclic Molecules

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Methods for the determination of mercury are described using gold nanoparticles functionalized with nitrogen containing cyclic molecules. Detection methods are based on the prevention of nitrogenous compounds induced aggregation of gold nanoparticles by mercury. Histamine, melamine, o-phenylenediamine and uracil induced aggregation of gold nanoparticles. Incubation of histamine, melamine or o-phenylenediamine with mercury resulted in reduction of gold nanoparticles aggregation. Inverse relationship was observed between mercury concentration and aggregation of gold nanoparticles. Dynamic ranges of the methods using histamine, melamine and o-phenylenediamine were 200 nM–7.5 µM, 200 nM–6.0 µM and 200 nM–2.0 µM, respectively. Metals, namely, Pb(II), Co(II), Cr(III), Cu(II), Ni(II), Zn(II), Ca(II), Ba(II) and Cd(II), did not interfere in the assay. However, Ag(I) prevented histamine and o-phenylenediamine induced aggregation of gold nanoparticles. Histamine, melamine and o-phenylenediamine can serve as ligands for the development of sensitive methods for mercury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Clarkson, T.W., Magos, L., and Myers, G.J., N. Engl. J. Med., 2003, vol. 349, no. 18, p. 1731.

    Article  CAS  Google Scholar 

  2. Uzun, L., Kara, A., Osman, B., Yılmaz, E., Beş irli, N., and Denizli, A., J. Appl. Polym. Sci., 2009, vol. 114, p. 2246.

    Article  CAS  Google Scholar 

  3. Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., and Timberlake, D., Environ. Pollut., 2004, vol. 131, p. 323.

    Article  Google Scholar 

  4. Cabecinhas, A.S., Novais, S.C., Santos, S.C., Rodrigues, A.C.M., Pestana, J.L.T., Soares, A.M.V.M., and Lemos, M.F.L., Chemosphere, 2015, vol. 119, p. 490.

    Article  CAS  Google Scholar 

  5. Guallar, E., Sanz-Gallardo, M.I., van’t Veer, P., Bode, P., Aro, A., Gómez-Aracena, J., Kark, J.D., Riemersma, R.A., Martin-Moreno, J.M., and Kok, F.J., N. Engl. J. Med., 2002, vol. 347, p. 1747.

    Article  CAS  Google Scholar 

  6. Chamsaz, M., Arbab-Zavar, M.H., and Akhondzadeh, J., Anal. Sci., 2008, vol. 24, p. 799.

    Article  CAS  Google Scholar 

  7. Kopysc, E., Pyrzynska, K., Garbos, S., and Bulska, E., Anal. Sci., 2000, vol. 16, p. 1309.

    Article  CAS  Google Scholar 

  8. Karunasagar, D., Arunachalam, J., and Gangadharan, S., J. Anal. At. Spectrom., 1998, vol. 13, p. 679.

    Article  CAS  Google Scholar 

  9. Li, Y., Chen, C., Li, B., Sun, J., Wang, J., Gao, Y., and Chai, Z., J. Anal. At. Spectrom., 2006, vol. 6, no. 21, p. 94.

    Article  Google Scholar 

  10. Wu, H., Jin, Y., Han, W., Miao, Q., and Bi, S., Spectrochim. Acta, Part B, 2006, vol., 61, p. 831.

    Article  Google Scholar 

  11. Chen, H., Chen, J., Jin, X., and Wei D., J. Hazard. Mater., 2009, vol. 172, p. 1282.

    Article  CAS  Google Scholar 

  12. Lu, C., Zu, Y., and Yam, V.W.W., J. Chromatogr. A, 2007, vol. 1163, nos. 1-2, p. 328.

    Article  CAS  Google Scholar 

  13. Liu, S.J., Nie, H.G., Jiang, J.H., Shen, G.L., and Yu, R.Q., Anal. Chem., 2009, vol. 81, no. 14, p. 5724.

    Article  CAS  Google Scholar 

  14. Spãtaru, N., Sarada, B.V., Popa, E., Tryk, D.A., and Fujishima, A., Anal. Chem., 2001, vol. 73, no. 3, p. 514.

    Article  Google Scholar 

  15. Li, L., Wen, Y., Xu, L., Xu, Q., Song, S., Zuo, X., Yan, J., Zhang, W., and Liu, G., Biosens. Bioelectron., 2016, vol. 75, p. 433.

    Article  CAS  Google Scholar 

  16. Apyari, V.V., Arkhipova, V.V., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2014, vol. 69, p. 1.

    Article  CAS  Google Scholar 

  17. Apyari, V.V., Dmitrienko, S.G., Gorbunova, M.V., Furletov, A.A., and Zolotov, Yu.A., J. Anal. Chem., 2019, vol. 74, p. 21.

    Article  CAS  Google Scholar 

  18. Daniel, M.C. and Astruc, D., Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  Google Scholar 

  19. Ma, M., Wang, J., and Zheng, X., Microchim. Acta, 2011, vol. 172, p. 155.

    Article  CAS  Google Scholar 

  20. Rosi, N.L. and Mirkin, C.A., Chem. Rev., 2005, vol. 10, no. 4, p. 1547.

    Article  Google Scholar 

  21. Huang, C.C. and Chang, H.T., Chem. Commun., 2007, vol. 12, p. 1215.

    Article  Google Scholar 

  22. Liu, C.W., Hsieh, Y.T., Huang, C.C., Lin, Z.H., and Chang, H.T., Chem. Commun., 2008, vol. 19, p. 2242.

    Article  Google Scholar 

  23. Chansuvarn, W. and Imyim, A., Microchim. Acta, 2012, vol. 176, nos. 1-2, p. 57.

    Article  CAS  Google Scholar 

  24. Chen, Z., Zhang, C., Ma, H., Zhou, T., Jiang, B., Chen, M., and Chen, X., Talanta, 2015, vol. 134, p. 603.

    Article  CAS  Google Scholar 

  25. Hung, Y.L., Hsiung, T.M., Chen, Y.Y, Huang, Y.F., and Huang, C.C., J. Phys. Chem., 2010, vol. 114, no. 9, p. 16329.

    Article  CAS  Google Scholar 

  26. Yu, C.J. and Tseng, W.L., Langmuir, 2018, vol. 24, no. 21, p. 12717.

    Article  Google Scholar 

  27. Lou, T., Chen, L., Zhang, C., Kang, Q., You, H., Shen, D., and Chen, L., Anal. Methods, 2012, vol. 2, p. 488.

    Article  Google Scholar 

  28. Sener, G., Uzun, L., and Denizli, A., Anal. Chem., 2013, vol. 86, p. 514.

    Article  Google Scholar 

  29. Häkkinen, H., Nat. Chem., 2012, vol. 4, p. 443.

    Article  Google Scholar 

  30. Liu, G., Ren, H., Guan, Y., Dai, R., and Chai, C., Anal. Sci., 2015, vol. 31, no. 2, p. 113.

    Article  Google Scholar 

  31. Gahlaut, J., Rajput, Y.S., Meena, S., Nanda, D.K., and Sharma, R., Anal. Lett., 2018, vol. 51, no. 8, p. 1208.

    Article  CAS  Google Scholar 

  32. Chai, F., Wang, C., Wang, T., Ma, Z., and Su, Z., Nanotechnology, 2010, vol. 21, no. 2. https://doi.org/10.1088/0957-4484/21/2/025501

  33. Duan, J. and Guo, Z.Y., Chin. Chem. Lett., 2012, vol. 23, p. 225.

    Article  CAS  Google Scholar 

  34. Guo, Z., Duan, J., Yang, F., Li, M., Hao, T., Wang, S., and Wei, D., Talanta, 2012, vol. 93, p. 49.

    Article  CAS  Google Scholar 

  35. Liu, J. and Lu, Y., Nat. Protoc., 2006, vol. 1, p. 246.

    Article  CAS  Google Scholar 

  36. Furletov, A.A., Apyari, V.V., Garshev, A.V., Dmitrienko, S.G., and Zolotov, Yu.A., J. Anal. Chem., 2017, vol. 72, p. 1203.

    Article  CAS  Google Scholar 

Download references

Funding

This project did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudhishthir Singh Rajput.

Ethics declarations

Authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khongsit, A., Rajput, Y.S., Meena, S. et al. Opportunities for Mercuric Ion Spectrophotometric Determination based on Reduction of Gold Nanoparticles Aggregation by N-containing Cyclic Molecules. J Anal Chem 77, 295–300 (2022). https://doi.org/10.1134/S1061934822030066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822030066

Keywords:

Navigation