Skip to main content
Log in

Octadecyltrimethylammonium Bromide Micelles as a Template in the Seedless Synthesis of Gold Nanorods

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Specific features of the seedless synthesis of gold nanoparticles in micellar solutions of both individual alkyltrimethylammonium bromides with different hydrocarbon chain lengths and their mixtures have been studied. The main attention has been focused on studying the possibility of controlling the shape and, consequently, the position of the localized surface plasmon resonance of the nanoparticles in the presence of octadecyltrimethylammonium bromide (OTAB). It has been found that its use leads to the formation of monodisperse gold nanorods with a larger aspect ratio than that in the case of cetyltrimethylammonium bromide, which is commonly used for this purpose. Moreover, it has been shown that the introduction of OTAB into micellar solutions of its homolog with a noticeably shorter alkyl chain (dodecyltrimethylammonium bromide) promotes a change in the shape of the formed gold nanoparticles from spherical to rodlike one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Unfortunately, the authors of [12] have reported no data on the aspect ratio of particles formed at each of these stages. In our opinion, this information would enable one to gain a deeper insight into the effect of variations in n on the character of GNR growth.

  2. The presence of this interaction is evidenced by both the results of [21] devoted to studying hydroquinone adsolubilization on the surface of SiO2 particles coated with CTAB and our data, according to which, the addition of hydroquinone to a CTAB solution leads to an increase in the size of micelles of this surfactant [4].

REFERENCES

  1. Song, T., Gao, F., Guo, S., Zhang, Y., Li, S., You, H., and Du, Y., Nanoscale, 2021, vol. 13, p. 3895.

    Article  CAS  Google Scholar 

  2. González-Rubio, G., Scarabelli, L., Guerrero-Martinez, A., and Liz-Marzán, L.M., ChemNanoMat, 2020, vol. 6, p. 698.

    Article  Google Scholar 

  3. Zheng, J., Cheng, X., Zhang, H., Bai, X., Ai, R., Shao, L., and Wang, J., Chem. Rev., 2021, vol. 121, p. 13342.

    Article  CAS  Google Scholar 

  4. Salavatov, N.A., Dement’eva, O.V., Mikhailichenko, A.I., and Rudoy, V. M., Colloid J., 2018, vol. 80, p. 541.

    Article  CAS  Google Scholar 

  5. Ali, M.R.K., Snyder, B., and El-Sayed, M.A., Langmuir, 2012, vol. 28, p. 9807.

    Article  CAS  Google Scholar 

  6. Zhang, L., Xia, K., Lu, Z., Li, G., Chen, J., Deng, Y., Li, S., Zhou, F., and He, N., Chem. Mater., 2014, vol. 26, p. 1794.

    Article  CAS  Google Scholar 

  7. Lai, J., Zhang, L., Niu, W., Qi, W., Zhao, J., Liu, Z., Zhang, W., and Xu, G., Nanotecnology, 2014, vol. 25, p. 125601.

    Article  Google Scholar 

  8. Liopo, A., Wang, S., Derry, P.J., Oraevsky, A.A., and Zubarev, E.R., RSC Adv., 2015, vol. 5, p. 91587.

    Article  CAS  Google Scholar 

  9. Liu, K., Bu, Y., Zheng, Y., Jiang, X., Yu, A., and Wang, H., Chem. Eur. J., 2017, vol. 23, p. 3291.

    Article  CAS  Google Scholar 

  10. Chang, H.-H. and Murphy, C.J., Chem. Mater., 2018, vol. 30, p. 1427.

    Article  CAS  Google Scholar 

  11. Roach, L., Coletta, P.L., Critchley, K., and Evans, S.D., J. Phys. Chem. C, 2022, vol. 126, p. 3235.

    Article  CAS  Google Scholar 

  12. Gao, J., Bender, C.M., and Murphy, C.J., Langmuir, 2003, vol. 19, p. 9065.

    Article  CAS  Google Scholar 

  13. Nikoobakht, B. and El-Sayed, M.A., Chem. Mater., 2003, vol. 15, p. 1957.

    Article  CAS  Google Scholar 

  14. Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Kang, Y., Engheta, N., Kagan, C.R., and Murray, C.B., ACS Nano, 2012, vol. 6, p. 2804.

    Article  CAS  Google Scholar 

  15. González-Rubio, G., Kumar, V., Llombart, P., Díaz-Núñez, P., Bladt, E., Altantzis, T., Bals, S., Peña-Rodríguez, O., Noya, E.G., MacDowell, L.G., Guerrero-Martínez, A., and Liz-Marzán, L.M., ACS Nano, 2019, vol. 13, p. 4424.

    Article  Google Scholar 

  16. Spirin, M.G., Brichkin, S.B., Yushkov, E.S., and Razumov, V.F., High Energy Chem., 2020, vol. 54, p. 308.

    Article  CAS  Google Scholar 

  17. Spirin, M.G., Brichkin, S.B., Lizunova, A.A., and Razumov, V.F., Colloid J., 2022, vol. 84, p. 100.

    Article  CAS  Google Scholar 

  18. Semenov, S.A., Rudoy, V.M., and Khlebtsov, N.G., Colloid J., 2016, vol. 78, p 386.

    Article  Google Scholar 

  19. Eustis, S. and El-Sayed, M.A., J. Appl. Phys., 2006, vol. 100, p. 044324.

    Article  Google Scholar 

  20. Khlebtsov, B.N., Khanadeev, V.A., Ye, J., Sukhorukov, G.B., and Khlebtsov, N.G., Langmuir, 2014, vol. 30, p. 1696−1703.

    Article  CAS  Google Scholar 

  21. Li, L., Wang, L., Du, X., Lu, Y., and Yang, Z., J. Colloid Interface Sci., 2007, vol. 315, p. 671.

    Article  CAS  Google Scholar 

  22. Rodrıguez-Fernandez, J., Perez-Juste, G., Mulvaney, P., and Liz-Marzan, L.M., J. Phys. Chem. B, 2005, vol. 109, p. 14257.

    Article  Google Scholar 

Download references

Funding

The work was carried out within the framework of the order of the Ministry of Science and Higher Education of the Russian Federation and was supported by the Russian Foundation for Basic Research (project no. 20-33-90266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Dement’eva.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dement’eva, O.V., Matsur, V.A., Zaikin, A.S. et al. Octadecyltrimethylammonium Bromide Micelles as a Template in the Seedless Synthesis of Gold Nanorods. Colloid J 84, 689–695 (2022). https://doi.org/10.1134/S1061933X22600312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22600312

Navigation